Varieties and $Z_2$-graded algebras
Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 359-374

Voir la notice de l'article provenant de la source Math-Net.Ru

A structure theory of varieties of associative algebras over a field of characteristic zero is constructed. It is shown that any variety is a product of a nilpotent and a semiprime variety. The semiprime varieties are described. Bibliography: 10 titles.
@article{IM2_1985_25_2_a4,
     author = {A. R. Kemer},
     title = {Varieties and $Z_2$-graded algebras},
     journal = {Izvestiya. Mathematics },
     pages = {359--374},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a4/}
}
TY  - JOUR
AU  - A. R. Kemer
TI  - Varieties and $Z_2$-graded algebras
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 359
EP  - 374
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a4/
LA  - en
ID  - IM2_1985_25_2_a4
ER  - 
%0 Journal Article
%A A. R. Kemer
%T Varieties and $Z_2$-graded algebras
%J Izvestiya. Mathematics 
%D 1985
%P 359-374
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a4/
%G en
%F IM2_1985_25_2_a4
A. R. Kemer. Varieties and $Z_2$-graded algebras. Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 359-374. http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a4/