Integrable Euler equations on Lie algebras arising in problems of mathematical physics
Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 207-257

Voir la notice de l'article provenant de la source Math-Net.Ru

Complete integrability in the sense of Liouville is established for the rotation of an arbitrary rigid body about a fixed point in a Newtonian field with an arbitrary homogeneous quadratic potential. Explicit formulas, which express the angular velocity of the rigid body rotation in terms of theta functions on Riemannian surfaces, are obtained. A series of cases is found in which the Euler equations on the Lie algebra $\operatorname{SO}(4)$ are integrable. A model of pulsar rotation, the dynamics of which are described by Euler equations on the Lie algebra $\operatorname{SO}(3)\oplus E_3$, is investigated. Bibliography: 53 titles.
@article{IM2_1985_25_2_a0,
     author = {O. I. Bogoyavlenskii},
     title = {Integrable {Euler} equations on {Lie} algebras arising in problems of mathematical physics},
     journal = {Izvestiya. Mathematics },
     pages = {207--257},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a0/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - Integrable Euler equations on Lie algebras arising in problems of mathematical physics
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 207
EP  - 257
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a0/
LA  - en
ID  - IM2_1985_25_2_a0
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T Integrable Euler equations on Lie algebras arising in problems of mathematical physics
%J Izvestiya. Mathematics 
%D 1985
%P 207-257
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a0/
%G en
%F IM2_1985_25_2_a0
O. I. Bogoyavlenskii. Integrable Euler equations on Lie algebras arising in problems of mathematical physics. Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 207-257. http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a0/