Integrable Euler equations on Lie algebras arising in problems of mathematical physics
Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 207-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

Complete integrability in the sense of Liouville is established for the rotation of an arbitrary rigid body about a fixed point in a Newtonian field with an arbitrary homogeneous quadratic potential. Explicit formulas, which express the angular velocity of the rigid body rotation in terms of theta functions on Riemannian surfaces, are obtained. A series of cases is found in which the Euler equations on the Lie algebra $\operatorname{SO}(4)$ are integrable. A model of pulsar rotation, the dynamics of which are described by Euler equations on the Lie algebra $\operatorname{SO}(3)\oplus E_3$, is investigated. Bibliography: 53 titles.
@article{IM2_1985_25_2_a0,
     author = {O. I. Bogoyavlenskii},
     title = {Integrable {Euler} equations on {Lie} algebras arising in problems of mathematical physics},
     journal = {Izvestiya. Mathematics },
     pages = {207--257},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a0/}
}
TY  - JOUR
AU  - O. I. Bogoyavlenskii
TI  - Integrable Euler equations on Lie algebras arising in problems of mathematical physics
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 207
EP  - 257
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a0/
LA  - en
ID  - IM2_1985_25_2_a0
ER  - 
%0 Journal Article
%A O. I. Bogoyavlenskii
%T Integrable Euler equations on Lie algebras arising in problems of mathematical physics
%J Izvestiya. Mathematics 
%D 1985
%P 207-257
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a0/
%G en
%F IM2_1985_25_2_a0
O. I. Bogoyavlenskii. Integrable Euler equations on Lie algebras arising in problems of mathematical physics. Izvestiya. Mathematics , Tome 25 (1985) no. 2, pp. 207-257. http://geodesic.mathdoc.fr/item/IM2_1985_25_2_a0/

[1] Euler L., “Decouverte d'une nouveau principe de Mecanique”, Memoires de l'Acad. des Sc. de Berlin, 14, 1758, 154–193

[2] Lagrange J., Mecanique analytique, Paris, 1788

[3] Kowalewski S. V., “Sur la probleme de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12 (1889), 177–232 | DOI | MR

[4] Steklov V. A., O dvizhenii tverdogo tela v zhidkosti, tip. Darre, Kharkov, 1893

[5] Steklov V. A., “Sur la mouvement d'un corps solide ayant une cavite de forme ellipsoidale remplie par un liquide incompressible et sur les variations des latitudes”, Annales de la Faculte des Sciences de Toulouse, I:3 (1909)

[6] Lyapunov M. A., “Novyi sluchai integriruemosti differentsialnykh uravnenii dvizheniya tverdogo tela v zhidkosti”, Soobsch. Kharkovsk. Matem. Obsch., IV:1 (1893), 3–7

[7] Chaplygin S. A., “Novoe chastnoe reshenie zadachi o dvizhenii tverdogo tela v zhidkosti”, Trudy otdeleniya fizich. nauk Obsch. lyubit. estestvoznaniya, XI, 1902, 10–19

[8] Chaplygin S. A., “Novyi sluchai vrascheniya tyazhelogo tverdogo tela, podpertogo v odnoi tochke”, Trudy otdeleniya fizich. nauk Obsch. lyubit. estestvoznaniya, X, 1901, 12–18

[9] Goryachev D. N., “O dvizhenii tyazhelogo tverdogo tela vokrug nepodvizhnoi tochki v sluchae $A=B=4C$”, Matem. sb., 21:3 (1900), 431–438

[10] Clebch A., “Über die Bewegung eines Körpers in einer Flüssigkeit”, Mathem. Annalen, 3 (1871), 238–262 | DOI

[11] Brun F., “Rotation kring fix pnkt”, Ofversigt at Kongl. Svenska Vetenskaps Akad. Förhadl. Stokholm, 7 (1893), 455–468

[12] Novikov S. P., Shmeltser I., “Periodicheskie resheniya uravnenii Kirkhgofa dlya svobodnogo dvizheniya tverdogo tela v zhidkosti i rasshirennaya teoriya Lyusternika–Shnirelmana–Morsa (LMSh), I”, Funkts. analiz i ego prilozh., 15:3 (1981), 54–66 | MR

[13] Novikov S. P., “Variatsionnye metody i periodicheskie resheniya uravnenii tipa Kirkhgofa, II”, Funkts. analiz i ego prilozh., 15:4 (1981), 37–53 | MR

[14] Jacobi C. G. J., Vorlesungen über Dynamik, Königsberg, 1866 | Zbl

[15] Gorr G. V., Kudryashova L. V., Stepanova L. A., Klassicheskie zadachi dinamiki tverdogo tela, Naukova dumka, Kiev, 1978 | MR

[16] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR

[17] Bogoyavlenskii O. I., “Integriruemye uravneniya Eilera na shestimernykh algebrakh Li”, Dokl. AN SSSR, 268:1 (1983), 11–15 | MR | Zbl

[18] Bogoyavlenskii O. I., “Integraly chetvertoi stepeni dlya uravnenii Eilera na shestimernykh algebrakh Li”, Dokl. AN SSSR, 273:1 (1983), 15–18 | MR

[19] Bogoyavlenskii O. I., “Dinamika tverdogo tela s ellipsoidalnymi polostyami, zapolnennymi magnitnoi zhidkostyu”, Dokl. AN SSSR, 272:6 (1983), 1364–1367 | MR | Zbl

[20] Bogoyavlenskii O. I., “Dva integriruemykh sluchaya dinamiki tverdogo tela v silovom pole”, Dokl. AN SSSR, 275:6 (1984), 1359–1363 | MR | Zbl

[21] Bogoyavlenskii O. I., “Periodicheskie resheniya v modeli vrascheniya pulsara”, Dokl. AN SSSR, 276:2 (1984), 343–347 | MR

[22] Brun F., “Rotation kring fix punkt, II, III”, Arkiv for Matem., Astronomi och Fysik, 4:4 (1907), 1–4; 6:5 (1909), 1–10

[23] Goryachev D. N., Nekotorye obschie integraly v zadache o dvizhenii tverdogo tela, tip. Varshavsk. Uchebn. Okruga, Varshava, 1910

[24] Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza”, Funkts. analiz i ego prilozh., 8:3 (1974), 54–66 | MR | Zbl

[25] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, Uspekhi matemat. nauk, 31:1 (1976), 55–136 | MR | Zbl

[26] Dubrovin B. A., “Vpolne integriruemye gamiltonovy sistemy, svyazannye s matrichnymi operatorami, i abelevy mnogoobraziya”, Funkts. analiz i ego prilozh., 11:4 (1977), 28–41 | MR | Zbl

[27] Manakov S. V., “Zametka ob integrirovanii uravnenii Eilera dinamiki $n$-mernogo tverdogo tela”, Funkts. analiz i ego prilozh., 10:4 (1976), 93–94 | MR | Zbl

[28] Adler M., van Moerbeke P., “Completely Integrable Systems, Euclidean Lie Algebras, and Curves”, Adv. in Mathem., 38:3 (1980), 267–317 | DOI | MR | Zbl

[29] Adler M., van Moerbeke P., “Linearization of Hamiltonian Systems, Jacobi Varieties and Representation Theory”, Adv. in Matem., 38:3 (1980), 318–379 | DOI | MR | Zbl

[30] Perelomov A. M., “Neskolko zamechanii ob integriruemosti uravnenii dvizheniya tverdogo tela v idealnoi zhidkosti”, Funkts. analiz i ego prilozh., 15:2 (1981), 83–86 | MR

[31] Haine L., “Geodesic Flow on $\mathrm{SO}(4)$ and Abelian Surfaces”, Mathem. Annalen., 263 (1983), 435–472 | DOI | MR | Zbl

[32] Baker H. F., “Note on the foregoing paper “Commutative ordinary differential operators””, Proc. Royal Soc. London, A118 (1928), 584–593 | DOI

[33] Akhiezer N. I., “Kontinualnyi analog ortogonalnykh mnogochlenov na sisteme intervalov”, Dokl. AN SSSR, 141:2 (1961), 263–266 | Zbl

[34] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, Uspekhi matem. nauk, 36:2 (1981), 11–80 | MR | Zbl

[35] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, t. 1, 2, Mir, M., 1982 | MR

[36] Goryachev D. N., “Novye sluchai dvizheniya tverdogo tela vokrug nepodvizhnoi tochki”, Varshavsk. Univers. Izvestiya, 3 (1915), 3–14

[37] Goryachev D. N., “Novye sluchai integriruemosti dinamicheskikh uravnenii Eilera”, Varshavsk. Univers. Izvestiya, 3 (1916), 3–15

[38] Chaplygin S. A., O nekotorykh sluchayakh dvizheniya tverdogo tela v zhidkosti, Universit. tip., M., 1897

[39] Adler M., van Moerbeke P., “Kowalewski's asymptotic method, Kac–Moody Lie algebras and regularization”, Commun. Math., Phys., 86:1 (1982), 83–106 | DOI | MR

[40] Greenhill A. G., “On the general motion of a liquid ellipsoid”, Proc. Cambr. Phyl. Soc., IV:4 (1880) | Zbl

[41] Zhukovskii N. E., “O dvizhenii tverdogo tela, imeyuschego polosti, napolnennye odnorodnoi kapelnoi zhidkostyu”, Zhurnal Russkogo fiziko-khimicheskogo obschestva, ch. fizicheskaya, XVII:6 (1885), 81–113, otd. I

[42] Poincare H., “Sur la precession des corps deformables”, Bulletin Astronomique, XXVII (1910)

[43] Moiseev N. N., Rumyantsev V. V., Dinamika tela s polostyami, soderzhaschimi zhidkost, Nauka, M., 1965 | Zbl

[44] Bogoyavlensky O. I., “Model of pulsar rotation and Euler equations on Lie algebras”, International Congress of Mathematicians, Short Communications, Abstracts (1982, Warszaw), XI, 1983, 27

[45] Van Moerbeke P., Algebraic complete integrability of Hamiltonian systems and Kac–Moody Lie algebras, Invited lecture at the International Congress of Mathematicians Preprint (1982, Warszaw), 1983 | MR

[46] Perelomov A. M., “Lax Representation for the System of S. Kowalevskaya type”, Commun. Math. Phys., 81:2 (1981), 239–243 | DOI | MR

[47] Bogoyavlenskii O. I., Metody kachestvennoi teorii dinamicheskikh sistem v astrofizike i gazovoi dinamike, Nauka, M., 1980 | MR | Zbl

[48] Daison F., Khaar D., Neitronnye zvezdy i pulsary, Mir, M., 1973

[49] Kulikovskii A. G., Lyubimov G. A., Magnitnaya gidrodinamika, Nauka, M., 1962

[50] Kulikovskii A. G., “O dvizheniyakh s odnorodnoi deformatsiei v magnitnoi gidrodinamike”, Dokl. AN SSSR, 120:5 (1958), 984–986 | MR | Zbl

[51] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Nauka, M., 1967 | MR

[52] Bisnovatyi-Kogan G. S., Popov Ju. P., Samochin A. A., “The magnetohydrodynamical rotational model of supernova explosion”, Astrophys. Space Sciences, 41 (1976), 321–356 | DOI | Zbl

[53] Berezin F. A., “Models of Gross–Neveu Type”, Commun. in Math. Phys., 63:2 (1978), 131–154 | DOI | MR