Estimates of reachable sets for linear systems
Izvestiya. Mathematics , Tome 25 (1985) no. 1, pp. 193-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

Lower and upper estimates are obtained for the reachable set of a nonautonomous control system. Ellipsoidal estimates of the reachable set are used for an upper estimate of the duration of a time optimal move from an arbitrary fixed set $M_0$ to a given set $M_1$ and for the construction of a control carrying $M_0$ to $M_1$ in the estimated time span. Bibliography: 10 titles.
@article{IM2_1985_25_1_a9,
     author = {V. A. Komarov},
     title = {Estimates of reachable sets for linear systems},
     journal = {Izvestiya. Mathematics },
     pages = {193--206},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a9/}
}
TY  - JOUR
AU  - V. A. Komarov
TI  - Estimates of reachable sets for linear systems
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 193
EP  - 206
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a9/
LA  - en
ID  - IM2_1985_25_1_a9
ER  - 
%0 Journal Article
%A V. A. Komarov
%T Estimates of reachable sets for linear systems
%J Izvestiya. Mathematics 
%D 1985
%P 193-206
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a9/
%G en
%F IM2_1985_25_1_a9
V. A. Komarov. Estimates of reachable sets for linear systems. Izvestiya. Mathematics , Tome 25 (1985) no. 1, pp. 193-206. http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a9/

[1] Blagodatskikh V. I., Teoriya differentsialnykh vklyuchenii, ch. I, MGU, M., 1979

[2] Abramenko S. N., Balin E. A., Seisov Yu. B., “Otsenki mnozhestv dostizhimosti upravlyaemykh sistem”, Izv. AN TurkSSR, 1980, no. 4, 3–7 | MR

[3] Vinter R., “A characterization of reachable sets for nonlinear systems”, SIAM J. Control., 18:6 (1980), 599–610 | DOI | MR | Zbl

[4] Schaepfer F. H., Schweppe F. C., “Continious-time state estimation under disturbances boundedby by convex sets”, IEEE Trans. Automatic Control, AC-17:2 (1972), 197–205 | DOI

[5] Chernousko F. L., “Ellipsoidalnye otsenki oblasti dostizhimosti upravlyaemoi sistemy”, Prikl. matem. i mekh., 45:1 (1981), 11–19 | MR

[6] Korobov V. I., “Obschii podkhod k resheniyu zadachi sinteza ogranichennykh upravlenii v zadache upravlyaemosti”, Matem. sb., 109:4 (1979), 582–606 | MR | Zbl

[7] Butkovskii A. G., “Differentsialno-geometricheskii metod konstruktivnogo resheniya zadach upravlyaemosti i finitnogo upravleniya”, Avtomatika i telemekhanika, 1982, no. 1, 5–18 | MR | Zbl

[8] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[9] Chernousko F. L., “Optimalnye garantirovannye otsenki neopredelennostei s pomoschyu ellipsoidov, I, II, III”, Izv. AN SSSR. Tekhnicheskaya kibernetika, 1980, no. 3, 3–11 ; No 4, 3–11 ; No 5, 5–11 | MR | MR | MR

[10] Komarov V. A., “Otsenki vremeni bystrodeistviya v lineinykh sistemakh”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matematika i kibernetika, 1980, no. 4, 38–43 | MR | Zbl