Riemann integrability of an optimal control in linear time-optimal problems
Izvestiya. Mathematics , Tome 25 (1985) no. 1, pp. 183-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear time-optimal problem is considered. It is shown that the set of initial states for which a three-dimensional time-optimal problem at the origin, with constant coefficients, has no solution in the class of Riemann integrable controls can fill up a given ball to an arbitrary extent. For a large class of multidimensional systems it is shown that this set does not contain isolated points. Sufficient conditions for the existence of a Riemann integrable control are studied for problems with variable coefficients. Bibliography: 8 titles.
@article{IM2_1985_25_1_a8,
     author = {D. B. Silin},
     title = {Riemann integrability of an optimal control in linear time-optimal problems},
     journal = {Izvestiya. Mathematics },
     pages = {183--192},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a8/}
}
TY  - JOUR
AU  - D. B. Silin
TI  - Riemann integrability of an optimal control in linear time-optimal problems
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 183
EP  - 192
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a8/
LA  - en
ID  - IM2_1985_25_1_a8
ER  - 
%0 Journal Article
%A D. B. Silin
%T Riemann integrability of an optimal control in linear time-optimal problems
%J Izvestiya. Mathematics 
%D 1985
%P 183-192
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a8/
%G en
%F IM2_1985_25_1_a8
D. B. Silin. Riemann integrability of an optimal control in linear time-optimal problems. Izvestiya. Mathematics , Tome 25 (1985) no. 1, pp. 183-192. http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a8/

[1] Silin D. B., “O variatsii i integriruemosti po Rimanu optimalnogo upravleniya v lineinykh sistemakh”, Dokl. AN SSSR, 257:3 (1981), 548–550 | MR | Zbl

[2] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973

[3] Blagodatskikh V. I., Teoriya differentsialnykh vklyuchenii, Chast I, MGU, M., 1979

[4] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[5] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[6] Boltyanskii V. G., “Lineinaya zadacha optimalnogo upravleniya”, Differentsialnye uravneniya, 5:5 (1969), 783–799 | Zbl

[7] Olech C., “Extremal Solutions of a Control System”, Journal of Differential Equations, 2:1 (1966), 74–101 | DOI | MR | Zbl

[8] Olech C., “A Note Concerning Extremal Points of a Convex Set”, Bulletin de l'academie Polonaise des sciences. Serie des Sciences Mathematiques, 13:5 (1965), 347–351 | MR | Zbl