Decomposition of an analytic function into a~sum of periodic functions
Izvestiya. Mathematics , Tome 25 (1985) no. 1, pp. 163-181

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a convex polygon in $\mathbf C$ with vertices $a_1,\dots,a_m$, $m$ odd, and let $P_k$ be the half-plane bounded by an extension of the side $(a_k,a_{k+1})$ and containing $D$. A necessary and sufficient condition is found for a function analytic in $D$ and continuous on $\overline D$ to split into a sum of functions $f_k(z)$, $k=1,\dots,m$, where $f_k(z)$ is analytic in $P_k$, continuous in $\overline P_k$ and periodic with period $a_{k+1}-a_k$. Bibliography: 11 titles.
@article{IM2_1985_25_1_a7,
     author = {A. M. Sedletskii},
     title = {Decomposition of an analytic function into a~sum of periodic functions},
     journal = {Izvestiya. Mathematics },
     pages = {163--181},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a7/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Decomposition of an analytic function into a~sum of periodic functions
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 163
EP  - 181
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a7/
LA  - en
ID  - IM2_1985_25_1_a7
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Decomposition of an analytic function into a~sum of periodic functions
%J Izvestiya. Mathematics 
%D 1985
%P 163-181
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a7/
%G en
%F IM2_1985_25_1_a7
A. M. Sedletskii. Decomposition of an analytic function into a~sum of periodic functions. Izvestiya. Mathematics , Tome 25 (1985) no. 1, pp. 163-181. http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a7/