The axiom of $\Phi$-holomorphic planes in contact metric geometry
Izvestiya. Mathematics , Tome 25 (1985) no. 1, pp. 51-73

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized almost contact structures are introduced as a particular case of generalized almost Hermitian structures. A complete classification is obtained for reductive generalized contact metric manifolds satisfying the axiom of $\Phi$-holomorphic planes. Bibliography: 9 titles.
@article{IM2_1985_25_1_a3,
     author = {V. F. Kirichenko},
     title = {The axiom of $\Phi$-holomorphic planes in contact metric geometry},
     journal = {Izvestiya. Mathematics },
     pages = {51--73},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a3/}
}
TY  - JOUR
AU  - V. F. Kirichenko
TI  - The axiom of $\Phi$-holomorphic planes in contact metric geometry
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 51
EP  - 73
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a3/
LA  - en
ID  - IM2_1985_25_1_a3
ER  - 
%0 Journal Article
%A V. F. Kirichenko
%T The axiom of $\Phi$-holomorphic planes in contact metric geometry
%J Izvestiya. Mathematics 
%D 1985
%P 51-73
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a3/
%G en
%F IM2_1985_25_1_a3
V. F. Kirichenko. The axiom of $\Phi$-holomorphic planes in contact metric geometry. Izvestiya. Mathematics , Tome 25 (1985) no. 1, pp. 51-73. http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a3/