On~integrability of the Banach indicatrix of a~smooth mapping
Izvestiya. Mathematics , Tome 25 (1985) no. 1, pp. 19-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f\colon\mathbf R^n\to\mathbf R^n$ be a mapping of class $C^{(l)}$ with compact support, and let $N(f,y)$ be the number of solutions of the equation $f(x)=y$. It is proved that if $p$, then $\int[N(f,y)]^p\,dy\infty$, and an example is given which shows that this integral can diverge if $p>l$. Bibliography: 9 titles.
@article{IM2_1985_25_1_a1,
     author = {S. A. Gulevich},
     title = {On~integrability of the {Banach} indicatrix of a~smooth mapping},
     journal = {Izvestiya. Mathematics },
     pages = {19--44},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a1/}
}
TY  - JOUR
AU  - S. A. Gulevich
TI  - On~integrability of the Banach indicatrix of a~smooth mapping
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 19
EP  - 44
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a1/
LA  - en
ID  - IM2_1985_25_1_a1
ER  - 
%0 Journal Article
%A S. A. Gulevich
%T On~integrability of the Banach indicatrix of a~smooth mapping
%J Izvestiya. Mathematics 
%D 1985
%P 19-44
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a1/
%G en
%F IM2_1985_25_1_a1
S. A. Gulevich. On~integrability of the Banach indicatrix of a~smooth mapping. Izvestiya. Mathematics , Tome 25 (1985) no. 1, pp. 19-44. http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a1/

[1] Gulevich S. A., “O dostatochnom uslovii integriruemosti indikatrisy Banakha gladkogo otobrazheniya”, Izv. AN SSSR. Ser. matem., 47:5 (1983), 1114–1134 | MR | Zbl

[2] Breker T., Lander L., Differentsiruemye rostki i katastrofy, Mir, M., 1977

[3] Van der Varden B. L., Algebra, Nauka, M., 1976 | MR

[4] Ivanov L. D., Variatsii mnozhestv i funktsii, Nauka, M., 1975 | MR

[5] Vitushkin A. G., O mnogomernykh variatsiyakh, Gostekhizdat, M., 1955

[6] Khodzh V., Pido D., Metody algebraicheskoi geometrii, t. 1–3, IL, M., 1954, 1955

[7] Federer H., Geometric measure theory, Springer, Berlin, 1969 | MR

[8] Yomdin Y., Global bounds for the Betti numbers of regular fibers of differentiable mappings, preprint, Max-Planck-Institut für Mathematik, Bonn, 1983 | MR

[9] Merkov A. B., “O nekotorykh svoistvakh gladkikh otobrazhenii”, Vestnik MGU. Ser. matem., 1979, no. 2, 63–69 | MR | Zbl