Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1985_25_1_a0, author = {N. V. Govorov and S. P. Grushevskii}, title = {On~some metric properties of the boundary values of functions that are analytic in a~half-plane}, journal = {Izvestiya. Mathematics }, pages = {1--17}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {1985}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a0/} }
TY - JOUR AU - N. V. Govorov AU - S. P. Grushevskii TI - On~some metric properties of the boundary values of functions that are analytic in a~half-plane JO - Izvestiya. Mathematics PY - 1985 SP - 1 EP - 17 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a0/ LA - en ID - IM2_1985_25_1_a0 ER -
N. V. Govorov; S. P. Grushevskii. On~some metric properties of the boundary values of functions that are analytic in a~half-plane. Izvestiya. Mathematics , Tome 25 (1985) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/IM2_1985_25_1_a0/
[1] Tsereteli O. D., “Metricheskie svoistva sopryazhennykh funktsii”, Sovremennye problemy matematiki, 7, M., 1975, 18–57
[2] Tsereteli O. D., “Zamechanie o sopryazhennykh funktsiyakh”, Soobsch. ANGruz. SSR, 63:1 (1971), 42–44
[3] Tsereteli O. D., “Zamechanie k teoremam Kolmogorova i F. i M. Rissov”, Tr. Simpoz. po mekhanike sploshnoi sredy i rodstvennykh problem analiza, v. 1 (1971), Metsniereba, Tbilisi, 1973, 241–254
[4] Tsereteli O. D., “O sopryazhennykh funktsiyakh”, Matem. zametki, 22:5 (1977), 171–183
[5] Govorov I. V., Grushevskii S. P., “O nekotorykh metricheskikh svoistvakh granichnykh znachenii funktsii, analiticheskikh v poluploskosti”, Dokl. AN SSSR, 242:1 (1978), 21–24 | MR | Zbl
[6] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Vischa shkola, Kharkov, 1977
[7] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M., L., 1950
[8] Kollingvud E., Lovater L., Teoriya predelnykh mnozhestv, Mir, M., 1971 | MR
[9] Macintyre A. J., Fuchs W. H. J., “Inequalities for the logarithmic derivatives of a polinomial”, J. London Math. Soc., 15 (1940) | DOI | MR | Zbl