@article{IM2_1985_24_3_a6,
author = {A. I. Vahabov},
title = {On~equiconvergence of expansions in trigonometric {Fourier} series and in principal functions of ordinary differential operators},
journal = {Izvestiya. Mathematics},
pages = {567--582},
year = {1985},
volume = {24},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a6/}
}
TY - JOUR AU - A. I. Vahabov TI - On equiconvergence of expansions in trigonometric Fourier series and in principal functions of ordinary differential operators JO - Izvestiya. Mathematics PY - 1985 SP - 567 EP - 582 VL - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a6/ LA - en ID - IM2_1985_24_3_a6 ER -
%0 Journal Article %A A. I. Vahabov %T On equiconvergence of expansions in trigonometric Fourier series and in principal functions of ordinary differential operators %J Izvestiya. Mathematics %D 1985 %P 567-582 %V 24 %N 3 %U http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a6/ %G en %F IM2_1985_24_3_a6
A. I. Vahabov. On equiconvergence of expansions in trigonometric Fourier series and in principal functions of ordinary differential operators. Izvestiya. Mathematics, Tome 24 (1985) no. 3, pp. 567-582. http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a6/
[1] Birkhoff G. D., “Boundary value and expansion problem of ordinary linear differential equations”, Trans. Amer. Math. Soc., 9 (1908), 373–395 | DOI | MR | Zbl
[2] Tamarkin Ya. D., O nekotorykh obschikh zadachakh teorii obyknovennykh differentsialnykh uravnenii i razlozhenii proizvolnykh funktsii v ryady, Petrograd, 1917 | Zbl
[3] Tamarkin Ya. D., “Some general problems of theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions”, Math. Z., 27 (1927), 1–54 | DOI | MR | Zbl
[4] Ilin V. A., “O ravnoskhodimosti razlozhenii v trigonometricheskii ryad Fure i po sobstvennym funktsiyam puchka M. V. Keldysha obyknovennykh nesamosopryazhennykh differentsialnykh operatorov”, Dokl. AN SSSR, 225:3 (1975), 497–494 ; “Рћ СЃРІРѕРNoстваС... РїСЂРёРІРμРґРμРЅРЅРѕРNo РїРѕРґСЃРёСЃС‚РμРјС‹ собствРμРЅРЅС‹С... Рё РїСЂРёСЃРѕРμРґРёРЅРμРЅРЅС‹С... функциРNo пучка Рњ. Р’. РљРμлдыша обыкновРμРЅРЅС‹С... диффРμСЂРμнциальныС... РѕРїРμраторов”, Докл. РђРќ РЎРЎРЎР , 230:1 (1976), 30–33 ; “РќРμРѕР±С...РѕРґРёРјС‹Рμ Рё достаточныРμ условия базисности Рё равносС...одимости СЃ тригономРμтричРμСЃРєРёРј СЂСЏРґРѕРј СЃРїРμктральныС... разложРμРЅРёРNo, I, II”, ДиффРμСЂРμнциальныРμ уравнРμРЅРёСЏ, 5 (1980), 771–794 ; 6 (1980), 981–1109 | MR | MR
[5] Khromov A. P., “Teoremy ravnoskhodimosti dlya integro-differentsialnykh i integralnykh operatorov”, Matem. sb., 114(156):3 (1981), 378–405 | MR | Zbl
[6] Vagabov A. I., “O ravnoskhodimosti razlozhenii v trigonometricheskii ryad Fure i po glavnym funktsiyam obyknovennykh differentsialnykh operatorov”, Dokl. AN SSSR, 254:6 (1981), 1294–1297 | MR
[7] Keldysh M. V., “O sobstvennykh funktsiyakh i sobstvennykh znacheniyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, Dokl. AN SSSR, 77:1 (1951), 11–14 | Zbl