Automorphisms of simple Lie superalgebras
Izvestiya. Mathematics , Tome 24 (1985) no. 3, pp. 539-551.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives an enumeration of the outer automorphisms of simple finite-dimensional complex Lie superalgebras, the nonisomorphic infinite-dimensional Lie superalgebras associated with these automorphisms, and the systems of simple roots in contragredient Lie superalgebras (finite-dimensional and associated with a finite-dimensional simple Lie superalgebra and automorphisms of this Lie superalgebra). Bibliography: 6 titles.
@article{IM2_1985_24_3_a4,
     author = {V. V. Serganova},
     title = {Automorphisms of simple {Lie} superalgebras},
     journal = {Izvestiya. Mathematics },
     pages = {539--551},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a4/}
}
TY  - JOUR
AU  - V. V. Serganova
TI  - Automorphisms of simple Lie superalgebras
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 539
EP  - 551
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a4/
LA  - en
ID  - IM2_1985_24_3_a4
ER  - 
%0 Journal Article
%A V. V. Serganova
%T Automorphisms of simple Lie superalgebras
%J Izvestiya. Mathematics 
%D 1985
%P 539-551
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a4/
%G en
%F IM2_1985_24_3_a4
V. V. Serganova. Automorphisms of simple Lie superalgebras. Izvestiya. Mathematics , Tome 24 (1985) no. 3, pp. 539-551. http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a4/

[1] Kac V. G., “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl

[2] Leites D. A., “Vvedenie v teoriyu supermnogoobrazii”, UMN, 35:1 (1980), 3–57 | MR | Zbl

[3] Scheunert M., Nahm W., Rittenberg V., “Classification of all simple graded Lie algebras, whose Lie algebra is reductive. II: Construction of the exceptional algebras”, J. Math. Phys., 17:9 (1976), 1640–1644 | DOI | MR | Zbl

[4] Freidental G., “Oktavy, osobye gruppy i oktavnaya geometriya”, Matematika, 1:1 (1957), 117–153

[5] Kac V. G., “Infinitedimensional algebras, Dedekind's $\eta$-function, classical Möbius function and the very strange formula”, Adv. Math., 30 (1978), 85–136 ; “An elucidation of “Infinite-dimensional algebras ... and the very strange formula”. $E_8^{(1)}$ and the cube root of the modular invariant $j$”, Adv. Math., 35 (1980), 264–273 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Bernshtein I. N., Leites D. A., “Integralnye formy i formula Stoksa na supermnogoobraziyakh”, Funkts. analiz, 11:1 (1977), 75–76