@article{IM2_1985_24_3_a4,
author = {V. V. Serganova},
title = {Automorphisms of simple {Lie} superalgebras},
journal = {Izvestiya. Mathematics},
pages = {539--551},
year = {1985},
volume = {24},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a4/}
}
V. V. Serganova. Automorphisms of simple Lie superalgebras. Izvestiya. Mathematics, Tome 24 (1985) no. 3, pp. 539-551. http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a4/
[1] Kac V. G., “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl
[2] Leites D. A., “Vvedenie v teoriyu supermnogoobrazii”, UMN, 35:1 (1980), 3–57 | MR | Zbl
[3] Scheunert M., Nahm W., Rittenberg V., “Classification of all simple graded Lie algebras, whose Lie algebra is reductive. II: Construction of the exceptional algebras”, J. Math. Phys., 17:9 (1976), 1640–1644 | DOI | MR | Zbl
[4] Freidental G., “Oktavy, osobye gruppy i oktavnaya geometriya”, Matematika, 1:1 (1957), 117–153
[5] Kac V. G., “Infinitedimensional algebras, Dedekind's $\eta$-function, classical Möbius function and the very strange formula”, Adv. Math., 30 (1978), 85–136 ; “An elucidation of “Infinite-dimensional algebras ... and the very strange formula”. $E_8^{(1)}$ and the cube root of the modular invariant $j$”, Adv. Math., 35 (1980), 264–273 | DOI | MR | Zbl | DOI | MR | Zbl
[6] Bernshtein I. N., Leites D. A., “Integralnye formy i formula Stoksa na supermnogoobraziyakh”, Funkts. analiz, 11:1 (1977), 75–76