On~the zeros of the function $\zeta(s)$ on short intervals of the critical line
Izvestiya. Mathematics , Tome 24 (1985) no. 3, pp. 523-537

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any $\varepsilon>0$ there exists $c=c(\varepsilon)>0$ such that for $T\geqslant T_0(\varepsilon)>0$ and $H=T^{27/82+\varepsilon}$ we have $N_0(T+H)-N_0(T)\geqslant cH\ln T$, where $N_0(T)$ is the number of odd order zeros of $\zeta(\frac12+it)$ in the interval $(0,T)$. Bibliography: 12 titles.
@article{IM2_1985_24_3_a3,
     author = {A. A. Karatsuba},
     title = {On~the zeros of the function $\zeta(s)$ on short intervals of the critical line},
     journal = {Izvestiya. Mathematics },
     pages = {523--537},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a3/}
}
TY  - JOUR
AU  - A. A. Karatsuba
TI  - On~the zeros of the function $\zeta(s)$ on short intervals of the critical line
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 523
EP  - 537
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a3/
LA  - en
ID  - IM2_1985_24_3_a3
ER  - 
%0 Journal Article
%A A. A. Karatsuba
%T On~the zeros of the function $\zeta(s)$ on short intervals of the critical line
%J Izvestiya. Mathematics 
%D 1985
%P 523-537
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a3/
%G en
%F IM2_1985_24_3_a3
A. A. Karatsuba. On~the zeros of the function $\zeta(s)$ on short intervals of the critical line. Izvestiya. Mathematics , Tome 24 (1985) no. 3, pp. 523-537. http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a3/