On~the zeros of the function $\zeta(s)$ on short intervals of the critical line
Izvestiya. Mathematics , Tome 24 (1985) no. 3, pp. 523-537.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any $\varepsilon>0$ there exists $c=c(\varepsilon)>0$ such that for $T\geqslant T_0(\varepsilon)>0$ and $H=T^{27/82+\varepsilon}$ we have $N_0(T+H)-N_0(T)\geqslant cH\ln T$, where $N_0(T)$ is the number of odd order zeros of $\zeta(\frac12+it)$ in the interval $(0,T)$. Bibliography: 12 titles.
@article{IM2_1985_24_3_a3,
     author = {A. A. Karatsuba},
     title = {On~the zeros of the function $\zeta(s)$ on short intervals of the critical line},
     journal = {Izvestiya. Mathematics },
     pages = {523--537},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a3/}
}
TY  - JOUR
AU  - A. A. Karatsuba
TI  - On~the zeros of the function $\zeta(s)$ on short intervals of the critical line
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 523
EP  - 537
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a3/
LA  - en
ID  - IM2_1985_24_3_a3
ER  - 
%0 Journal Article
%A A. A. Karatsuba
%T On~the zeros of the function $\zeta(s)$ on short intervals of the critical line
%J Izvestiya. Mathematics 
%D 1985
%P 523-537
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a3/
%G en
%F IM2_1985_24_3_a3
A. A. Karatsuba. On~the zeros of the function $\zeta(s)$ on short intervals of the critical line. Izvestiya. Mathematics , Tome 24 (1985) no. 3, pp. 523-537. http://geodesic.mathdoc.fr/item/IM2_1985_24_3_a3/

[1] Riman B., Sochineniya, OGIZ, M., L., 1948

[2] Hardy G. H., “Sur les zeros de la fonction $\zeta(s)$ de Riemann”, Compt. Rend. Acad. Sci., 158 (1914), 1012–1014 | Zbl

[3] Hardy G. H., Littlewood J. E., “Contributions to the theory of Riemann zeta-function and the theory of distribution of primes”, Acta Math., 41 (1918), 119–196 | DOI | MR

[4] Hardy G. H., Littlewood J. E., “The zeros of Riemann's zeta-function on the critical line”, Math. Zs., 10 (1921), 283–317 | DOI | MR | Zbl

[5] Selberg A., “On the zeros of Riemann's zeta-function”, Skr. Norske Vid. Akad. Oslo, 10 (1942) | MR

[6] Mozer Ya., “Ob odnoi teoreme Khardi–Littlvuda v teorii dzeta-funktsii Rimana”, Acta Arith., 31 (1976), 45–51 | MR

[7] Mozer Ya., “O kornyakh uravneniya $Z'(t)=0$”, Acta Arith., 40 (1981), 79–89, 97–107 | MR

[8] Mozer Ya., “Uluchshenie teoremy Khardi–Littlvuda o plotnosti nulei funktsii $\zeta(1/2+it)$”, Acta Math. Univ. Comen. Bratislava, 42,43 (1983), 41–50 | MR

[9] Karatsuba A. A., “O rasstoyanii mezhdu sosednimi nulyami dzeta-funktsii Rimana, lezhaschimi na kriticheskoi pryamoi”, Tr. Matem., in-ta im. V. A. Steklova AN SSSR, 157, 1981, 49–63 | MR | Zbl

[10] Karatsuba A. A., “O nulyakh dzeta-funktsii Rimana na korotkikh promezhutkakh kriticheskoi pryamoi”, Dokl. AN SSSR, 272:6 (1983), 1312–1314 | MR | Zbl

[11] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, IL, M., 1953

[12] Karatsuba A. A., Osnovy analiticheskoi teorii chisel, 2-e izd., Nauka, M., 1983 | MR