Variational problems and evolution variational inequalities in nonreflexive spaces with applications to problems of geometry and plasticity
Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 391-414.

Voir la notice de l'article provenant de la source Math-Net.Ru

An extension of a class of variational problems and evolution variational inequalities in nonreflexive spaces is constructed. The concept of a generalized solution for problems of this class is introduced, and relations that they satisfy are obtained. Extensions of a variational problem for nonparametric surfaces of prescribed mean curvature and two problems from the theory of ideal plasticity are considered as examples. Bibliography: 14 titles.
@article{IM2_1985_24_2_a8,
     author = {G. A. Seregin},
     title = {Variational problems and evolution variational inequalities in nonreflexive spaces with applications to problems of geometry and plasticity},
     journal = {Izvestiya. Mathematics },
     pages = {391--414},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a8/}
}
TY  - JOUR
AU  - G. A. Seregin
TI  - Variational problems and evolution variational inequalities in nonreflexive spaces with applications to problems of geometry and plasticity
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 391
EP  - 414
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a8/
LA  - en
ID  - IM2_1985_24_2_a8
ER  - 
%0 Journal Article
%A G. A. Seregin
%T Variational problems and evolution variational inequalities in nonreflexive spaces with applications to problems of geometry and plasticity
%J Izvestiya. Mathematics 
%D 1985
%P 391-414
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a8/
%G en
%F IM2_1985_24_2_a8
G. A. Seregin. Variational problems and evolution variational inequalities in nonreflexive spaces with applications to problems of geometry and plasticity. Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 391-414. http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a8/

[1] Mosolov P. P., Myasnikov V. P., Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981, 208 pp. | MR | Zbl

[2] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp. | MR

[3] Mosolov P. P., “O probleme minimuma funktsionala”, Izv. AN SSSR. Ser. matem., 31:6 (1967), 1289–1310 | MR | Zbl

[4] Mosolov P. P., “O funktsionale, svyazannom s poverkhnostyu dannoi srednei krivizny”, Matem. sb., 78:I (1969), 51–64 | MR | Zbl

[5] Nayroles B., “Essai de theorie functionnelle des structures rigides plastique parfaites”, J. Mec., 9:3 (1970), 491–506 | MR | Zbl

[6] Temam R., Strang G., “Duality and relaxation in the variational problems of plasticity”, J. Mec., 19:3 (1980), 1–35 | MR

[7] Temam R., “Solutions généralisées de certains équations du type hypersurfaces minima”, Arch. Rat. Mech. and Anal., 44 (1971), 121–156 | MR | Zbl

[8] Dyuvo G., Lions Zh. L., Neravenstva v mekhanike i fizike, Nauka, M., 1980, 384 pp. | MR

[9] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[10] Sobolev S. L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR

[11] Mosolov P. P., Myasnikov V. P., “O korrektnosti kraevykh zadach v mekhanike sploshnykh sred”, Matem. sb., 88:2 (1972), 256–287 | MR

[12] Piletskas K. I., “O prostranstvakh solenoidalnykh vektorov”, Zapiski nauchn. seminarov LOMI, 96, 1980, 237–239 | Zbl

[13] Ladyzhenskaya O. A., Solonnikov V. A., “O nekotorykh zadachakh vektornogo analiza i ob obobschennykh postanovkakh kraevykh zadach dlya uravnenii Nave–Stoksa”, Zapiski nauchn. seminarov LOMI, 59, 1976, 81–116 | Zbl

[14] Temam R., Strang G., “Functions of bounded deformation”, Arch. Rat. Mech. and Anal., 59 (1976), 81–116