Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes
Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 321-345.

Voir la notice de l'article provenant de la source Math-Net.Ru

Complete asymptotic expansions are found for the first eigenvalues and eigenfunctions of classical problems for the Laplace operator in two- and three-dimensional domains with small holes. Bibliography: 17 titles.
@article{IM2_1985_24_2_a5,
     author = {V. G. Maz'ya and S. A. Nazarov and B. A. Plamenevskii},
     title = {Asymptotic expansions of the eigenvalues of boundary value problems for the {Laplace} operator in domains with small holes},
     journal = {Izvestiya. Mathematics },
     pages = {321--345},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a5/}
}
TY  - JOUR
AU  - V. G. Maz'ya
AU  - S. A. Nazarov
AU  - B. A. Plamenevskii
TI  - Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 321
EP  - 345
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a5/
LA  - en
ID  - IM2_1985_24_2_a5
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%A S. A. Nazarov
%A B. A. Plamenevskii
%T Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes
%J Izvestiya. Mathematics 
%D 1985
%P 321-345
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a5/
%G en
%F IM2_1985_24_2_a5
V. G. Maz'ya; S. A. Nazarov; B. A. Plamenevskii. Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes. Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 321-345. http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a5/

[1] Samarskii A. A., “O vliyanii zakrepleniya na sobstvennye chastoty zamknutykh ob'emov”, Dokl. AN SSSR, 63:6 (1948), 631–634 | MR | Zbl

[2] Dnestrovskii Yu. N., “Ob izmenenii sobstvennykh znachenii pri izmenenii granitsy oblastei”, Vestnik MGU, 1964, no. 9, 61–74 | MR

[3] Swanson C. A., “Asymptotic variational formulae for eigenvalues”, Canad. Math. Bull., 6:1 (1963), 15–25 | MR | Zbl

[4] Ozawa Shin, “Singular Hadamard's variation of domains and eigenvalues of Laplacian 1”, Proc. Jap. Acad., A56 (1980), 351–357; “2”, Proc. Jap. Acad., A57:5 (1981), 242–246 | DOI | MR

[5] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob odnorodnykh resheniyakh zadachi Dirikhle vo vneshnosti tonkogo konusa”, Dokl. AN SSSR, 266:6 (1982), 281–284 | MR | Zbl

[6] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnykh vozmuscheniyakh oblasti, TGU, Tbilisi, 1981, 208 pp. | MR

[7] Geer J. F., Keller J. B., “Uniform asymptotic solutions for potential flow around a thin airfoil and the electrostatic potential about a thin conductor”, SIAM J. Appl. Math., 16:1 (1968), 75–101 | DOI | Zbl

[8] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s tonkoi schelyu. 1: Dvumernyi sluchai”, Matem. sb., 99:4 (1976), 514–537 | MR

[9] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s tonkoi schelyu. 2: Oblast s malym otverstiem”, Matem. sb., 103:2 (1977), 265–284 | MR

[10] Ilin A. M., “Issledovanie asimptotiki resheniya ellipticheskoi kraevoi zadachi s malym otverstiem”, Trudy seminara im. I. G. Petrovskogo, 6, MGU, M., 1981, 57–82

[11] Fedoryuk M. V., “Asimptotika resheniya zadachi Dirikhle dlya uravneniya Laplasa i Gelmgoltsa vo vneshnosti tonkogo tsilindra”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 167–186 | MR | Zbl

[12] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko V. Ya., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 456 pp. | MR

[13] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Trudy Moskovskogo matem. ob-va, 16, 1967, 209–292

[14] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob asimptotike reshenii odnogo kvazilineinogo uravneniya pri neregulyarnom vozmuschenii oblasti”, Differentsialnye uravneniya i ikh primeneniya, no. 27, Vilnyus, 1980, 17–50 | MR

[15] Ozawa S., “The first eigenvalue of the Laplacian on two dimensional Riemannian manifolds”, Tohoku Math. Journ., 34:1 (1982), 7–14 | DOI | MR | Zbl

[16] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962, 380 pp.

[17] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966, 516 pp. | MR | Zbl