A~three-instanton solution
Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 307-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Yang–Mills field is studied in the case of the $\operatorname{SU}(2)$ algebra. An explicit three-instanton solution is constructed. This solution is a rational function of free real parameters which vary in $R^{18}+R_+^3$. Bibliography: 13 titles.
@article{IM2_1985_24_2_a4,
     author = {V. E. Korepin and S. L. Shatashvili},
     title = {A~three-instanton solution},
     journal = {Izvestiya. Mathematics },
     pages = {307--320},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a4/}
}
TY  - JOUR
AU  - V. E. Korepin
AU  - S. L. Shatashvili
TI  - A~three-instanton solution
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 307
EP  - 320
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a4/
LA  - en
ID  - IM2_1985_24_2_a4
ER  - 
%0 Journal Article
%A V. E. Korepin
%A S. L. Shatashvili
%T A~three-instanton solution
%J Izvestiya. Mathematics 
%D 1985
%P 307-320
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a4/
%G en
%F IM2_1985_24_2_a4
V. E. Korepin; S. L. Shatashvili. A~three-instanton solution. Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 307-320. http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a4/

[1] Belavin A. A., Polyakov A. M., Schwartz A. S., Tyupkin Yu. S., “Pseudoparticle solutions of the Yang–Mills equations”, Phys. Lett., 59B:1 (1975), 85–87 | MR

[2] Polyakov A. M., “Compact gauge fields and the infrared catastrophe”, Phys. Lett., 59B:1 (1975), 82–84 | MR

[3] Atiyah M. F., Ward R. S., “Instantons and algebraic geometry”, Commun. Math. Phys., 55 (1977), 117–124 | DOI | MR | Zbl

[4] Atiyah M. F., Hitchin N. J., Drinfeld V. G., Manin Yu. I., “Construction of instantons”, Phys. Lett., 65A:3 (1978), 185–187 | MR | Zbl

[5] Drinfeld V. G., Manin Yu. I., “Polya Yanga–Millsa, instantony, tenzornye proizvedeniya instantonov”, YaF, 29:6 (1979), 1646–1654 | MR

[6] Drinfeld V. G., Manin Yu. I., “O lokalno svobodnykh puchkakh na $CP^3$, svyazannykh s polyami Yanga–Millsa”, UMN, 33:3(201) (1978), 165–166 | MR

[7] Drinfeld V. G., Manin Yu. I., “Avtodualnye polya Yanga–Millsa nad sferoi”, Funkts. analiz, 13:2 (1978), 78–79 ; Дринфельд В. Г., Манин Ю. И., “Инстантоны и пучки на $CP^3$”, Функц. анализ, 13:2 (1979), 59–74 | MR | MR

[8] Atiyah M. F., Geometry of Yang–Mills fields, Lezioni Fermiane, Pisa, 1979 | MR | Zbl

[9] Schwartz A. S., “On regular solutions of euclidean Yang–Mills equations”, Phys. Lett., 67B:2 (1977), 172–174 | MR

[10] Atiyah M. F., Hitchin N. J., Singer I. M., “Deformations of instantons”, Proc. Nat. Acad. Sci. USA, 74:7 (1977), 2662–2663 | DOI | MR | Zbl

[11] Christ N. H., Weinberg E. J., Stanton N. K., “General self-dual Yang–Mills solutions”, Phys. Rev., D18:6 (1978), 2013–2025 | MR

[12] Belavin A. A., “Inverse scattering problem and the algebro-geometric construction of instantons”, Sov. Sci. Rev. (phys. Rev.), 1979, no. 1, 1–28

[13] 't Hooft G., “Symmetry breaking through Bell–Jackiw anomalies”, Phys. Rev. Lett., 37:1 (1976), 8–11 | DOI