A~new correction theorem
Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 283-305

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proves an analogue of Men'shov's theorem (on correction up to a function with uniformly convergent Fourier series) for an arbitrary locally compact Abelian group of finite topological dimension. The spectrum of the corrected function can be placed in a prescribed “sparse” set. Bibliography: 11 titles.
@article{IM2_1985_24_2_a3,
     author = {S. V. Kislyakov},
     title = {A~new correction theorem},
     journal = {Izvestiya. Mathematics },
     pages = {283--305},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a3/}
}
TY  - JOUR
AU  - S. V. Kislyakov
TI  - A~new correction theorem
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 283
EP  - 305
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a3/
LA  - en
ID  - IM2_1985_24_2_a3
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%T A~new correction theorem
%J Izvestiya. Mathematics 
%D 1985
%P 283-305
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a3/
%G en
%F IM2_1985_24_2_a3
S. V. Kislyakov. A~new correction theorem. Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 283-305. http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a3/