Toroidal Fano varieties and root systems
Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 221-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is shown that over an algebraically closed field there exist only finitely many mutually nonisomorphic toroidal Fano varieties. We give a complete description of toroidal Fano varieties with a centrally symmetric fan. We prove the rationality of a special class of toroidal Fano varieties and consider applications to problems of rationality of algebraic groups. Bibliography: 17 titles.
@article{IM2_1985_24_2_a1,
     author = {V. E. Voskresenskii and A. A. Klyachko},
     title = {Toroidal {Fano} varieties and root systems},
     journal = {Izvestiya. Mathematics },
     pages = {221--244},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a1/}
}
TY  - JOUR
AU  - V. E. Voskresenskii
AU  - A. A. Klyachko
TI  - Toroidal Fano varieties and root systems
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 221
EP  - 244
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a1/
LA  - en
ID  - IM2_1985_24_2_a1
ER  - 
%0 Journal Article
%A V. E. Voskresenskii
%A A. A. Klyachko
%T Toroidal Fano varieties and root systems
%J Izvestiya. Mathematics 
%D 1985
%P 221-244
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a1/
%G en
%F IM2_1985_24_2_a1
V. E. Voskresenskii; A. A. Klyachko. Toroidal Fano varieties and root systems. Izvestiya. Mathematics , Tome 24 (1985) no. 2, pp. 221-244. http://geodesic.mathdoc.fr/item/IM2_1985_24_2_a1/

[1] Demazure M., “Sous-groupes algébriques de rang maximum du groupe de Cremona”, Annales Sci. Ecole Norm. Sup., 3 (1970), 507–588 | MR | Zbl

[2] Kempf G., Knudsen F., Mumford D., Saint-Donat B., Toroidal embeddings, I, Lect. Notes Math., 339, Springer, 1973 | MR | Zbl

[3] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, Uspekhi matem. nauk, 33:2(200) (1978), 85–134 | MR | Zbl

[4] Dantser L., Gryunbaum B., Kli V., Teorema Khelli, Mir, M., 1968

[5] Batyrev V. V., “Trekhmernye toricheskie mnogoobraziya Fano”, Izv. AN SSSR. Ser. matem., 45:4 (1981), 704–717 | MR | Zbl

[6] Dolgachev I., On a Fano compactification of a maximal torus in a simple algebraic group, Preprint, 1980 | MR | Zbl

[7] Klyachko A. A., “Modeli Demazyura dlya spetsialnogo klassa torov”, Seminar po arifmetike algebraicheskikh mnogoobrazii, Saratovskii un-t, 1979, 32–37

[8] Voskresenskii V. E., Algebraicheskie tory, Nauka, M., 1977 | MR

[9] Bashmakov M. I., Chistov A. L., “O ratsionalnosti nekotorogo klassa torov”, Trudy matem. in-ta AN SSSR, 148, Nauka, L., 1978, 27–29 | MR

[10] Burbaki N., Gruppy i algebry Li, Mir, M., 1972 | MR | Zbl

[11] Voskresenskii V. E., “Proektivnye invariantnye modeli Demazyura”, Izv. AN SSSR. Ser. matem., 46:2 (1982), 195–210 | MR | Zbl

[12] Serr Zh.-P., Kogomologii Galua, Mir, M., 1968 | MR

[13] Emelichev V. A., Kovalev M. M., Kravtsov M. K., Mnogogranniki, grafy, optimizatsiya, Nauka, M., 1981 | MR

[14] Gelfand I. M., MacPherson R. D., “Geometry in grassmanians and generalisation of the dilogarithm”, Adv. Math., 44:3 (1982), 279–312 | DOI | MR | Zbl

[15] Chevalley C., On algebraic group varieties, J. Math. Soc. Japan, 6, 1954 | MR | Zbl

[16] Kunyavskii B. E., “O biratsionalnoi klassifikatsii torov maloi razmernosti”, Seminar po arifmetike algebraicheskikh mnogoobrazii, Saratovskii un-t, 1979, 32–42

[17] McMullen P., “Transforms, diagrams and representations”, Contributions to Geometry, Proc. Geom. Symp., Siegen, 1978, 92–130 | MR