Linear boson models of time evolution in quantum statistical mechanics
Izvestiya. Mathematics , Tome 24 (1985) no. 1, pp. 151-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains a construction of time evolution for linear boson models of quantum statistical mechanics. The main result is a theorem on convergence to a quasifree moment functional in the course of linear time evolution. A connection between linear evolution of the moment functional and evolution of the corresponding state of an infinite quantum system is discussed. Bibliography: 30 titles.
@article{IM2_1985_24_1_a5,
     author = {Yu. M. Sukhov},
     title = {Linear boson models of time evolution in quantum statistical mechanics},
     journal = {Izvestiya. Mathematics },
     pages = {151--182},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1985_24_1_a5/}
}
TY  - JOUR
AU  - Yu. M. Sukhov
TI  - Linear boson models of time evolution in quantum statistical mechanics
JO  - Izvestiya. Mathematics 
PY  - 1985
SP  - 151
EP  - 182
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1985_24_1_a5/
LA  - en
ID  - IM2_1985_24_1_a5
ER  - 
%0 Journal Article
%A Yu. M. Sukhov
%T Linear boson models of time evolution in quantum statistical mechanics
%J Izvestiya. Mathematics 
%D 1985
%P 151-182
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1985_24_1_a5/
%G en
%F IM2_1985_24_1_a5
Yu. M. Sukhov. Linear boson models of time evolution in quantum statistical mechanics. Izvestiya. Mathematics , Tome 24 (1985) no. 1, pp. 151-182. http://geodesic.mathdoc.fr/item/IM2_1985_24_1_a5/

[1] Bratteli O., Robinson D. W., Operator algebras and quantum statistical mechanics, v. I, Springer-Verlag, New York, 1979 ; Bratteli O., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | Zbl | MR | Zbl

[2] Bratteli O., Robinson D. W., Operator algebras and quantum statistical mechanics, v. II, Springer-Verlag, New York, 1981 | MR | Zbl

[3] Lanford O. E., Robinson D. W., “Approach to equilibrium of free quantum systems”, Commun. Math. Phys., 24 (1972), 193–210 | DOI | MR

[4] Majewski W. A., “Time development of Bose systems”, Journ. Math. Phys., 22:12 (1981), 2921–2925 | DOI | MR | Zbl

[5] Sukhov Yu. M., “Skhodimost k ravnovesiyu dlya svobodnogo fermi-gaza”, Teoret. i matem. fizika, 55:2 (1983), 282–290 | MR

[6] Sukhov Yu. M., “Skhodimost k ravnovesnomu sostoyaniyu dlya odnomernoi kvantovoi modeli tverdykh sterzhnei”, Izv. AN SSSR. Ser. matem., 46:6 (1982), 1275–1315 | MR

[7] Sukhov Yu. M., “Skhodimost k ravnovesnomu sostoyaniyu v kvantovoi statisticheskoi mekhanike”, Uspekhi matem. nauk, 37:2 (1982), 257

[8] Dobrushin R. L., Suhov Yu. M., “On the problem of mathematical foundation of the Gibbs postulate in classical statistical mechanics”, Mathematical problems in theoretical physics, Proceedings (Rome, 1977), Lecture Notes in Physics, 80, Springer-Verlag, Berlin, Heidelberg, New York, 1978, 325–340 | MR

[9] Dobrushin R. L., Sukhov Yu. M., “Vremennaya asimptotika dlya nekotorykh vyrozhdennykh modelei evolyutsii sistem s beskonechnym chislom chastits”, Sovremennye problemy matematiki. Itogi nauki i tekhniki VINITI AN SSSR, 14, M., 1979, 147–254 | MR | Zbl

[10] Boldrighini C., Dobrushin R. L., Suhov Yu. M., Time asymptotics for some degenerate models of the evolution for systems of infinitely many particles, Preprint, Camerina University, Italy, 1980

[11] Kholevo A. S., Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, Nauka, M., 1980 | MR | Zbl

[12] Ginibre J., “Reduced density matrices of quantum gases, I”, Journ. Math. Phys., 6 (1965), 238–251 ; Zhinibre Zh., “Privedennye matritsy plotnosti kvantovykh gazov”, Matematika (sb. perevodov), 12:4 (1968), 104–130 | DOI | MR | Zbl

[13] Ginibre J., “Reduced density matrices of quantum gases, II”, Journ. Math. Phys., 6 (1965), 252–262 | DOI | MR | Zbl

[14] Ginibre J., “Reduced density matrices of quantum gases, III”, Journ. Math. Phys., 6 (1965), 1432–1446 | DOI | MR | Zbl

[15] Ginibre J., “Some applications of functional integration in statistical mechanics”, Statistical mechanics and quantum field theory (Les Houches summer school of theoretical physics), Gordon and Breach, New York, London, Paris, 1970

[16] Sukhov Yu. M., “Predelnye matritsy plotnosti dlya odnomernykh nepreryvnykh sistem kvantovoi statisticheskoi mekhaniki”, Matem. sb., 83:4 (1970), 491–512 | Zbl

[17] Sukhov Yu. M., “Regulyarnost predelnykh matrits plotnosti dlya odnomernykh nepreryvnykh kvantovykh sistem”, Trudy Mosk. matem. o-va, 26, 1972, 151–179 | Zbl

[18] Suhov Yu. M., “Limit Gibbs state for some classes of one-dimensional systems of quantum statistical mechanics”, Commun. Math. Phys., 62 (1978), 119–136 | DOI | MR

[19] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965

[20] Sukhov Yu. M., “Skhodimost k puassonovskomu raspredeleniyu dlya nekotorykh tipov sluchainogo dvizheniya chastits”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 135–154 | MR | Zbl

[21] Boldrighini C., Pellegrinotti A., Triolo L., “Convergence to stationary gaussian states for infinite harmonic systems”, Journ. Stat. Phys., 30:1 (1983), 123–155 | DOI | MR

[22] Ruelle D., Statistical mechanics. Rigorous results, W. A. Benjamin, Inc., New York, Amsterdam, 1969 ; Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971 | MR | Zbl

[23] Lanford O. E., Lebowitz J. L., “Time evolution and ergodic properties of harmonic systems”, Dynamical systems, theory and applications, Lecture Notes in Physics, 38, Springer-Verlag, Berlin, Heidelberg, New York, 1975 | MR

[24] Vatson G. N., Teoriya besselevykh funktsii, IL, M., 1949

[25] Lenard A., “Correlation functions and uniqueness of states in classical statistical mechanics”, Commun. Math. Phys., 30 (1973), 35–44 | DOI | MR

[26] Sukhov Yu. M., “Suschestvovanie i regulyarnost predelnogo sostoyaniya Gibbsa dlya odnomernykh nepreryvnykh sistem kvantovoi statisticheskoi mekhaniki”, Dokl. AN SSSR, 195:5 (1970), 1024–1027

[27] Novikov I. D., “Sostoyanie Gibbsa v kvantovoi statisticheskoi fizike”, Funkts. analiz i ego prilozh., 4:4 (1970), 79–80 | MR

[28] Dubin D. A., Solvable models in algebraic statistical mechanics, Clarendon Press, Oxford, 1974

[29] Dashyan Yu. R., “Ekvivalentnost malogo i bolshogo kanonicheskikh ansamblei Gibbsa dlya odnomernykh sistem kvantovoi statisticheskoi mekhaniki”, Teoret. i matem. fizika, 34:3 (1978), 341–351

[30] Matviichuk K. S., “Matematicheskoe opisanie kvantovykh sistem Boze i Fermi metodom chastichnykh matrits plotnosti kanonicheskogo ansamblya”, Teoret. i matem. fizika, 41:3 (1979), 346–367 | MR