The asymptotics of the Green function for a~second-order elliptic equation near the boundary of the domain
Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 579-594.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Green function $G(x,\xi)$ of the first boundary value problem in a bounded domain with smooth boundary is investigated. It is assumed that the point $\xi$, where the function has a singularity, tends to the boundary of the domain. Under this condition an asymptotic expansion of $G(x,\xi)$ is constructed up to any power of the distance from $\xi$ to the boundary. Asymptotic expansions different in form are constructed for points $x$ near $\xi$ and for points far from $\xi$. The final construction and the justification for the asymptotics of $G(x,\xi)$ is carried out by the method of matching asymptotic expansions. Bibliography: 12 titles.
@article{IM2_1984_23_3_a9,
     author = {A. M. Il'in and B. I. Suleimanov},
     title = {The asymptotics of the {Green} function for a~second-order elliptic equation near the boundary of the domain},
     journal = {Izvestiya. Mathematics },
     pages = {579--594},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a9/}
}
TY  - JOUR
AU  - A. M. Il'in
AU  - B. I. Suleimanov
TI  - The asymptotics of the Green function for a~second-order elliptic equation near the boundary of the domain
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 579
EP  - 594
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a9/
LA  - en
ID  - IM2_1984_23_3_a9
ER  - 
%0 Journal Article
%A A. M. Il'in
%A B. I. Suleimanov
%T The asymptotics of the Green function for a~second-order elliptic equation near the boundary of the domain
%J Izvestiya. Mathematics 
%D 1984
%P 579-594
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a9/
%G en
%F IM2_1984_23_3_a9
A. M. Il'in; B. I. Suleimanov. The asymptotics of the Green function for a~second-order elliptic equation near the boundary of the domain. Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 579-594. http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a9/

[1] Lopatinskii Ya. B., “Fundamentalnye resheniya sistemy differentsialnykh uravnenii ellipticheskogo tipa”, Ukr. matem. zh., 3:3 (1951), 290–316 | MR | Zbl

[2] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, IL, M., 1958

[3] Lossievskaya T. V., “O povedenii vblizi granitsy funktsii Grina zadach Dirikhle i Neimana dlya ellipticheskogo uravneniya vtorogo poryadka”, Differents. uravneniya, 9:6 (1973), 1109–1122

[4] Pazy A., “Asymptotic expansion of solutions of ordinary differential equations in hilbert space”, Arch. for Rat. Mech. Anal., 24:3 (1967), 193–218 | DOI | MR | Zbl

[5] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. I: Dvumernyi sluchai”, Matem. sb., 99:4 (1976), 514–537 | MR

[6] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. II: Oblast s malym otverstiem”, Matem. sb., 103:2 (1977), 265–284 | MR

[7] Lelikova E. F., “Metod sraschivaniya asimptoticheskikh razlozhenii dlya uravneniya $\varepsilon\Delta u-au_z=f$ v parallelepipede”, Differents. uravneniya, 14:9 (1978), 1638–1648 | MR | Zbl

[8] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16, 1967, 219–292

[9] Gadylshin R. R., “Asimptotika resheniya pervoi kraevoi zadachi dlya ellipticheskogo uravneniya s zadannoi osobennostyu na granitse oblasti”, Metod soglasovaniya asimptoticheskikh razlozhenii v zadachakh s singulyarnymi vozmuscheniyami, BFAN SSSR, Ufa, 1980, 96–114

[10] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[11] Adamar Zh., Zadacha Koshi dlya lineinykh uravnenii s chastnymi proizvodnymi giperbolicheskogo tipa, Nauka, M., 1978 | MR

[12] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob asimptotike reshenii ellipticheskikh kraevykh zadach pri neregulyarnom vozmuschenii oblasti”, Problemy matematicheskogo analiza. Kraevye zadachi. Spektralnaya teoriya, no. 8, LGU, L., 1981, 72–153 | MR