Extensions of Lie algebras and Hamiltonian systems
Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 561-578
Voir la notice de l'article provenant de la source Math-Net.Ru
An extension $\Omega(G)$ is constructed for a Lie algebra $G$, and an algorithm is proposed which converts functions in involution on $G^*$ into functions in involution on $\Omega(G)^*$. Operators of “rigid body” type are constructed for $\Omega(G)$ in the case of a semisimple Lie algebra $G$; complete integrability is proved for the Euler equations on $\Omega(G)^*$ with these operators.
Bibliography: 21 titles.
@article{IM2_1984_23_3_a8,
author = {V. V. Trofimov},
title = {Extensions of {Lie} algebras and {Hamiltonian} systems},
journal = {Izvestiya. Mathematics },
pages = {561--578},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a8/}
}
V. V. Trofimov. Extensions of Lie algebras and Hamiltonian systems. Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 561-578. http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a8/