On some representing systems in spaces of analytic functions
Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 487-509
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $E_\rho(z)$ be the Mittag-Leffler function. This article investigates the connection between “representing” properties for systems $\mathscr E_{\rho,\Lambda}=\{E_{\rho}(\lambda_kz)\}^{\infty}_{k=1}$ and $\mathscr E^{(n)}_{\rho,\Lambda}=\{E_\rho(\lambda_kz),zE_\rho(\lambda_kz),\dots,z^nE_\rho(\lambda_kz)\}^{\infty}_{k=1}$, $n\geqslant1$, as well as for systems $\mathscr E^1_{\rho,\Lambda}=\{E_\rho(\lambda_{k,1}z)\}^\infty_{k=1}$, $\mathscr E^2_{\rho,\Lambda}=\{E_\rho(\lambda_{k,2}z)\}^\infty_{k=1}$, and $\mathscr E^3_{\rho,\Lambda}=\mathscr E^1_{\rho,\Lambda}\cup\mathscr E^2_{\rho,\Lambda}$ in spaces of analytic functions.
Bibliography: 18 titles.
@article{IM2_1984_23_3_a4,
author = {Yu. F. Korobeinik},
title = {On some representing systems in spaces of analytic functions},
journal = {Izvestiya. Mathematics },
pages = {487--509},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a4/}
}
Yu. F. Korobeinik. On some representing systems in spaces of analytic functions. Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 487-509. http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a4/