On some representing systems in spaces of analytic functions
Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 487-509

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E_\rho(z)$ be the Mittag-Leffler function. This article investigates the connection between “representing” properties for systems $\mathscr E_{\rho,\Lambda}=\{E_{\rho}(\lambda_kz)\}^{\infty}_{k=1}$ and $\mathscr E^{(n)}_{\rho,\Lambda}=\{E_\rho(\lambda_kz),zE_\rho(\lambda_kz),\dots,z^nE_\rho(\lambda_kz)\}^{\infty}_{k=1}$, $n\geqslant1$, as well as for systems $\mathscr E^1_{\rho,\Lambda}=\{E_\rho(\lambda_{k,1}z)\}^\infty_{k=1}$, $\mathscr E^2_{\rho,\Lambda}=\{E_\rho(\lambda_{k,2}z)\}^\infty_{k=1}$, and $\mathscr E^3_{\rho,\Lambda}=\mathscr E^1_{\rho,\Lambda}\cup\mathscr E^2_{\rho,\Lambda}$ in spaces of analytic functions. Bibliography: 18 titles.
@article{IM2_1984_23_3_a4,
     author = {Yu. F. Korobeinik},
     title = {On some representing systems in spaces of analytic functions},
     journal = {Izvestiya. Mathematics },
     pages = {487--509},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a4/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - On some representing systems in spaces of analytic functions
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 487
EP  - 509
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a4/
LA  - en
ID  - IM2_1984_23_3_a4
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T On some representing systems in spaces of analytic functions
%J Izvestiya. Mathematics 
%D 1984
%P 487-509
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a4/
%G en
%F IM2_1984_23_3_a4
Yu. F. Korobeinik. On some representing systems in spaces of analytic functions. Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 487-509. http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a4/