On the absence of exact means for some bounded functions
Izvestiya. Mathematics, Tome 23 (1984) no. 3, pp. 431-447
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that there exist almost periodic functions $f(t)$ such that the function $$ \varphi(t)=\frac1{c+\int^t_0f(t)\,dt} $$ is bounded but does not have an exact mean value. This fact implies that there are first-order Bernoulli differential equations with almost periodic coefficients such that some bounded solutions do not have exact mean values. Bibliography: 2 titles.
@article{IM2_1984_23_3_a1,
author = {I. N. Blinov},
title = {On the absence of exact means for some bounded functions},
journal = {Izvestiya. Mathematics},
pages = {431--447},
year = {1984},
volume = {23},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a1/}
}
I. N. Blinov. On the absence of exact means for some bounded functions. Izvestiya. Mathematics, Tome 23 (1984) no. 3, pp. 431-447. http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a1/