On the absence of exact means for some bounded functions
Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 431-447.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that there exist almost periodic functions $f(t)$ such that the function $$ \varphi(t)=\frac1{c+\int^t_0f(t)\,dt} $$ is bounded but does not have an exact mean value. This fact implies that there are first-order Bernoulli differential equations with almost periodic coefficients such that some bounded solutions do not have exact mean values. Bibliography: 2 titles.
@article{IM2_1984_23_3_a1,
     author = {I. N. Blinov},
     title = {On the absence of exact means for some bounded functions},
     journal = {Izvestiya. Mathematics },
     pages = {431--447},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a1/}
}
TY  - JOUR
AU  - I. N. Blinov
TI  - On the absence of exact means for some bounded functions
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 431
EP  - 447
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a1/
LA  - en
ID  - IM2_1984_23_3_a1
ER  - 
%0 Journal Article
%A I. N. Blinov
%T On the absence of exact means for some bounded functions
%J Izvestiya. Mathematics 
%D 1984
%P 431-447
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a1/
%G en
%F IM2_1984_23_3_a1
I. N. Blinov. On the absence of exact means for some bounded functions. Izvestiya. Mathematics , Tome 23 (1984) no. 3, pp. 431-447. http://geodesic.mathdoc.fr/item/IM2_1984_23_3_a1/

[1] Blinov I. N., “Effekt ischeznoveniya pochti periodicheskikh reshenii u nelineinogo differentsialnogo uravneniya s kvaziperiodicheskimi koeffitsientami”, Izv. AN SSSR. Ser. matem., 46:6, 1333–1341 | MR | Zbl

[2] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR