On a sufficient condition for integrability of the banach indicatrix of a smooth mapping
Izvestiya. Mathematics, Tome 23 (1984) no. 2, pp. 391-408
Cet article a éte moissonné depuis la source Math-Net.Ru
Sufficient conditions are given for the convergence of integrals of the form $\int_{\mathbf R^k}(N(f,y))^p\,dy$, where $f\colon\mathbf R^n\to\mathbf R^k$ is a map with compact support with $k\leqslant n$ and $N(f,y)$ is the number of connected components of the level set $\{x:f(x)=y\}$. Bibliography: 5 titles.
@article{IM2_1984_23_2_a7,
author = {S. A. Gulevich},
title = {On a~sufficient condition for integrability of the banach indicatrix of a~smooth mapping},
journal = {Izvestiya. Mathematics},
pages = {391--408},
year = {1984},
volume = {23},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a7/}
}
S. A. Gulevich. On a sufficient condition for integrability of the banach indicatrix of a smooth mapping. Izvestiya. Mathematics, Tome 23 (1984) no. 2, pp. 391-408. http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a7/
[1] Ivanov L. D., Variatsii mnozhestv i funktsii, Nauka, M., 1975 | MR
[2] Vitushkin A. G., O mnogomernykh variatsiyakh, GTTI, M., 1955
[3] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl
[4] Federer H., Geometric measure theory, Springer, Berlin, 1969 | MR
[5] Ivanov L. D., Elementy polilineinoi algebry i ee prilozheniya k integrirovaniyu, KKhU, Kalinin, 1977