An estimate of the variation of a~normal parameter of a~chain on a~pseudoconvex surface
Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 367-389.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a strictly pseudoconvex hypersurface in a complex manifold, there exists a biholomorphically invariant family of curves called the chains. On each chain one can pick out a certain family of parametrizations called the normal parametrizations. In this paper it is shown that, if the angle between a chain and the complex tangent space to the hypersurface is not separated from zero, then the interval of variation of any normal parameter on the chain is unbounded. Bibliography: 6 titles.
@article{IM2_1984_23_2_a6,
     author = {N. G. Kruzhilin},
     title = {An estimate of the variation of a~normal parameter of a~chain on a~pseudoconvex surface},
     journal = {Izvestiya. Mathematics },
     pages = {367--389},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a6/}
}
TY  - JOUR
AU  - N. G. Kruzhilin
TI  - An estimate of the variation of a~normal parameter of a~chain on a~pseudoconvex surface
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 367
EP  - 389
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a6/
LA  - en
ID  - IM2_1984_23_2_a6
ER  - 
%0 Journal Article
%A N. G. Kruzhilin
%T An estimate of the variation of a~normal parameter of a~chain on a~pseudoconvex surface
%J Izvestiya. Mathematics 
%D 1984
%P 367-389
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a6/
%G en
%F IM2_1984_23_2_a6
N. G. Kruzhilin. An estimate of the variation of a~normal parameter of a~chain on a~pseudoconvex surface. Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 367-389. http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a6/

[1] Chern S. S., Moser I. K., “Real hypersurfaces in complex manifolds”, Acta Math., 133:3,4 (1974), 219–271 | DOI | MR

[2] Vitushkin A. G., “Globalnaya normalizatsiya veschestvenno-analiticheskoi giperpoverkhnosti vdol tsepi”, Dokl. AN SSSR, 269:1 (1983), 15–18 | MR | Zbl

[3] Beloshapka V. K., Vitushkin A. G., “Otsenki radiusa skhodimosti stepennykh ryadov, zadayuschikh otobrazhenie analiticheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 45:5 (1981), 962–984 | MR | Zbl

[4] Vitushkin A. G., Ezhov V. V., Kruzhilin N. G., “Prodolzhenie lokalnykh otobrazhenii psevdovypuklykh poverkhnostei”, Dokl. AN SSSR, 270:2 (1983), 271–274 | MR | Zbl

[5] Ezhov V. V., “Asimptotika povedeniya strogo psevdovypukloi poverkhnosti vdol ee tsepi”, Izv. AN SSSR. Ser. matem., 47:4 (1983), 856–880 | MR | Zbl

[6] Burns D., Shneider S., “Real hypersurfaces in complex manifolds”, Proc. Symp. in Pure Mathematics, 30 (1977), 141–168 | MR | Zbl