An estimate of the variation of a~normal parameter of a~chain on a~pseudoconvex surface
Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 367-389
Voir la notice de l'article provenant de la source Math-Net.Ru
On a strictly pseudoconvex hypersurface in a complex manifold, there exists
a biholomorphically invariant family of curves called the chains. On each chain one can pick out a certain family of parametrizations called the normal parametrizations. In this paper it is shown that, if the angle between a chain and the complex tangent space to the hypersurface is not separated from zero, then the interval of variation of any normal parameter on the chain is unbounded.
Bibliography: 6 titles.
@article{IM2_1984_23_2_a6,
author = {N. G. Kruzhilin},
title = {An estimate of the variation of a~normal parameter of a~chain on a~pseudoconvex surface},
journal = {Izvestiya. Mathematics },
pages = {367--389},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a6/}
}
N. G. Kruzhilin. An estimate of the variation of a~normal parameter of a~chain on a~pseudoconvex surface. Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 367-389. http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a6/