Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1984_23_2_a1, author = {V. I. Vasyunin and N. K. Nikol'skii}, title = {Classification of $H^2$-functions according to the degree of their cyclicity}, journal = {Izvestiya. Mathematics }, pages = {225--242}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {1984}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a1/} }
TY - JOUR AU - V. I. Vasyunin AU - N. K. Nikol'skii TI - Classification of $H^2$-functions according to the degree of their cyclicity JO - Izvestiya. Mathematics PY - 1984 SP - 225 EP - 242 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a1/ LA - en ID - IM2_1984_23_2_a1 ER -
V. I. Vasyunin; N. K. Nikol'skii. Classification of $H^2$-functions according to the degree of their cyclicity. Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 225-242. http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a1/
[1] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963
[2] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR
[3] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR
[4] Vasyunin V. I., Nikolskii N. K., “Upravlyayuschie podprostranstva minimalnoi razmernosti. Elementarnoe vvedenie. Discotheca”, Zap. nauchn. semin. LOMI, 113, 1981, 41–75 | MR
[5] Douglas R. G., Shapiro H. S., Shields A. L., “Cyclic vectors and invariant subspaces for the backward shift operator”, Ann. Inst. Fourier, 20:1 (1970), 37–76 | MR | Zbl
[6] Tolokonnikov V. A., “Otsenka v teoreme Karlesona o korone. Idealy algebry $H^\infty$, zadacha Sekefalvi-Nadya”, Zap. nauchn. semin. LOMI, 113, 1981, 178–198 | MR | Zbl