Classification of $H^2$-functions according to the degree of their cyclicity
Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 225-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

The vector-valued functions $f$ in the Hardy space $H^2(E)$ are classified according to their approximation capabilities with respect to the backward shift operator $S^*$, $S^*f\overset{\operatorname{def}}=\frac{f-f(0)}z$, i.e., according to the “size” of the closed linear span $\operatorname{span}(S^{*k}f:k\geqslant0)$. Bibliography: 6 titles.
@article{IM2_1984_23_2_a1,
     author = {V. I. Vasyunin and N. K. Nikol'skii},
     title = {Classification of $H^2$-functions according to the degree of their cyclicity},
     journal = {Izvestiya. Mathematics },
     pages = {225--242},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a1/}
}
TY  - JOUR
AU  - V. I. Vasyunin
AU  - N. K. Nikol'skii
TI  - Classification of $H^2$-functions according to the degree of their cyclicity
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 225
EP  - 242
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a1/
LA  - en
ID  - IM2_1984_23_2_a1
ER  - 
%0 Journal Article
%A V. I. Vasyunin
%A N. K. Nikol'skii
%T Classification of $H^2$-functions according to the degree of their cyclicity
%J Izvestiya. Mathematics 
%D 1984
%P 225-242
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a1/
%G en
%F IM2_1984_23_2_a1
V. I. Vasyunin; N. K. Nikol'skii. Classification of $H^2$-functions according to the degree of their cyclicity. Izvestiya. Mathematics , Tome 23 (1984) no. 2, pp. 225-242. http://geodesic.mathdoc.fr/item/IM2_1984_23_2_a1/

[1] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963

[2] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[3] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[4] Vasyunin V. I., Nikolskii N. K., “Upravlyayuschie podprostranstva minimalnoi razmernosti. Elementarnoe vvedenie. Discotheca”, Zap. nauchn. semin. LOMI, 113, 1981, 41–75 | MR

[5] Douglas R. G., Shapiro H. S., Shields A. L., “Cyclic vectors and invariant subspaces for the backward shift operator”, Ann. Inst. Fourier, 20:1 (1970), 37–76 | MR | Zbl

[6] Tolokonnikov V. A., “Otsenka v teoreme Karlesona o korone. Idealy algebry $H^\infty$, zadacha Sekefalvi-Nadya”, Zap. nauchn. semin. LOMI, 113, 1981, 178–198 | MR | Zbl