Fixed points and properties of solutions of differential inclusions
Izvestiya. Mathematics , Tome 23 (1984) no. 1, pp. 185-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems are proved on arcwise connectivity and strong arcwise connectivity of the set of fixed points of a multivalued mapping. The results are used to prove that the family of solutions of a differential inclusion with nonconvex right-hand side is arcwise connected. The Hukuhara property and the boundary property of a time-optimal solution is established for this differential inclusion. Bibliography: 9 titles.
@article{IM2_1984_23_1_a5,
     author = {A. V. Bogatyrev},
     title = {Fixed points and properties of solutions of differential inclusions},
     journal = {Izvestiya. Mathematics },
     pages = {185--199},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a5/}
}
TY  - JOUR
AU  - A. V. Bogatyrev
TI  - Fixed points and properties of solutions of differential inclusions
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 185
EP  - 199
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a5/
LA  - en
ID  - IM2_1984_23_1_a5
ER  - 
%0 Journal Article
%A A. V. Bogatyrev
%T Fixed points and properties of solutions of differential inclusions
%J Izvestiya. Mathematics 
%D 1984
%P 185-199
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a5/
%G en
%F IM2_1984_23_1_a5
A. V. Bogatyrev. Fixed points and properties of solutions of differential inclusions. Izvestiya. Mathematics , Tome 23 (1984) no. 1, pp. 185-199. http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a5/

[1] Plis A., “Measurable orientor fields”, Bull. Acad. Polon. Sci., 13:8 (1965), 565–569 | MR | Zbl

[2] Himmelburg C. J., Van Vleck F. S., “Lipschitzian generalized differential equations”, Rend. Sem. Mat. Univ. Pad., 48 (1973), 159–169 | MR

[3] Filippov A. F., “Differentsialnye uravneniya s mnogoznachnoi razryvnoi pravoi chastyu”, Dokl. AN SSSR, 151:1 (1963), 65–68 | Zbl

[4] Kikuchi N., “On some fundamental theorems of contingent equations in connection with control problems”, Publ. RIMS, Kyoto Un., A, 3:2 (1967), 177–201 | DOI | MR | Zbl

[5] Davy J. L., “Properties of the solution set of a generalized differential equations”, Bull. AMS, 6:3 (1972), 379–398 | MR | Zbl

[6] Filippov A. F., “Klassicheskie resheniya differentsialnykh uravnenii s mnogoznachnoi pravoi chastyu”, Vestn. MGU, ser. matemat., 1967, no. 3, 16–26 | Zbl

[7] Blagodatskikh V. I., “Nekotorye rezultaty po teorii differentsialnykh vklyuchenii”, Summer school on ordinary differential equations, part II, UJEP, Brno, 1975, 29–67

[8] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958, 375

[9] Hermes H., “The geometry of time-optimal control”, SIAM J. Control, 10:2 (1972), 221–229 | DOI | MR | Zbl