Semisimple automorphism groups of four-dimensional affine space
Izvestiya. Mathematics , Tome 23 (1984) no. 1, pp. 171-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that any regular action of a semisimple algebraic group on $\mathbf A^4$ is equivalent to a linear action. Bibliography: 22 titles.
@article{IM2_1984_23_1_a4,
     author = {D. I. Panyushev},
     title = {Semisimple automorphism groups of four-dimensional affine space},
     journal = {Izvestiya. Mathematics },
     pages = {171--183},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a4/}
}
TY  - JOUR
AU  - D. I. Panyushev
TI  - Semisimple automorphism groups of four-dimensional affine space
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 171
EP  - 183
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a4/
LA  - en
ID  - IM2_1984_23_1_a4
ER  - 
%0 Journal Article
%A D. I. Panyushev
%T Semisimple automorphism groups of four-dimensional affine space
%J Izvestiya. Mathematics 
%D 1984
%P 171-183
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a4/
%G en
%F IM2_1984_23_1_a4
D. I. Panyushev. Semisimple automorphism groups of four-dimensional affine space. Izvestiya. Mathematics , Tome 23 (1984) no. 1, pp. 171-183. http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a4/

[1] Kambayashi T., “Automorphism group of a polynomial ring and algebraic group action on an affine space”, J. Algebra, 60:2 (1979), 439–451 | DOI | MR | Zbl

[2] Bialynicki-Birula A., “Remarks on the actions of an algebraic torus on $k^n$ I, II”, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astr. Phys., 14 (1966), 177–181 ; 15 (1967), 123–125 | MR | MR

[3] Kambayashi T., Kussel P., “On linearising algebraic torus actions”, J. Pure Appl. Algebra, 23 (1982), 243–250 | DOI | MR | Zbl

[4] Kraft H., “Algebraic groups: invariants and representations”, International conference (Trento, Italy. 1.6–6.6, 1981)

[5] Richardson R. W., “The conjugating representation of a semisineple group”, Invent. Math., 54:3 (1979), 229–246 | DOI | MR

[6] Vust Th., These No 1671, Univ. de Geneva, 1974

[7] Borel A., Lineinye algebraicheskie gruppy, Mir, M., 1972 | MR | Zbl

[8] Richardson R. W., “An application of the Serre conjecture to semisimple algebraic groups”, Lect. Notes in Math., 848, 1981, 141–151 | MR | Zbl

[9] Luna D., “Slices étales”, Bull. Soc. Math. France, 33 (1973), 81–105 | MR | Zbl

[10] Luna D., “Aderences d'orbite et invariants”, Invent. Math., 29:3 (1975), 231–238 | DOI | MR | Zbl

[11] Popov V. L., “Klassifikatsiya trekhmernykh affinnykh algebraicheskikh mnogoobrazii, kvaziodnorodnykh otnositelno algebraicheskoi gruppy”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 566–609 | MR | Zbl

[12] Popov V. L., “Kriterii stabilnosti deistviya gruppy na faktorialnom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 34:3 (1970), 523–531

[13] Kempf G., “Some quotient varieties have rational singularities”, Michigan Math. J., 24:3 (1977), 347–352 | DOI | MR | Zbl

[14] Slodowy P., Simple singularites and simple algebraic groups, Lect. Notes Math., 815, 1980 | MR | Zbl

[15] Lipman J., “Rational singularities, with applications to algebraic surfaces and unique factorisation”, Publ. Math. IHES, 36 (1969), 195–279 | MR | Zbl

[16] Kambayashi T., “On Fujita's strong cancellation theorem for affine plane”, J. Fac. Sci. Univ. Tokyo, Sec. IA, 23:3 (1980)

[17] Khovanskii L. G., “Mnogogranniki Nyutona i rod polnykh peresechenii”, Funkts. analiz, 12:1 (1978), 51–61 | MR

[18] Bialynicki-Birula A., Hochshild G., Mostow G. D., “Extensions of representations of algebraic linear groups”, Amer. J. Math., 85:1 (1963), 131–144 | DOI | MR | Zbl

[19] Panyushev D. I., “O prostranstvakh orbit konechnykh i svyaznykh lineinykh grupp”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 95–99 | MR | Zbl

[20] Bialynicki-Birula A., “On fixed point schemes of actions of multiplicative and additive groups”, Topology, 12:1 (1973), 99–103 | DOI | MR | Zbl

[21] Fogarty J., Norman P., “A fixed-point characterisation of linearly reductive groups”, Contributions to algebra, papers dedicated to E. Colchin, 1977, 151–155 | MR | Zbl

[22] Maklein S., Gomologiya, Mir, M., 1966