Prym varieties: theory and applications
Izvestiya. Mathematics , Tome 23 (1984) no. 1, pp. 83-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author determines when the principally polarized Prymian $P(\widetilde C,I)$ of a Beauville pair $(\widetilde C,I)$ satisfying a certain stability type condition is isomorphic to the Jacobian of a nonsingular curve. As an application, he points out new components in the Andreotti–Mayer variety $N_{g-4}$ of principally polarized Abelian varieties of dimension $g$ whose theta-divisors have singular locus of dimension $\geqslant g-4$; he also proves a rationality criterion for conic bundles over a minimal rational surface in terms of the intermediate Jacobian. The first part of the paper contains the necessary preliminary material introducing the reader to the modern theory of Prym varieties. Bibliography: 32 titles.
@article{IM2_1984_23_1_a2,
     author = {V. V. Shokurov},
     title = {Prym varieties: theory and applications},
     journal = {Izvestiya. Mathematics },
     pages = {83--147},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a2/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - Prym varieties: theory and applications
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 83
EP  - 147
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a2/
LA  - en
ID  - IM2_1984_23_1_a2
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T Prym varieties: theory and applications
%J Izvestiya. Mathematics 
%D 1984
%P 83-147
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a2/
%G en
%F IM2_1984_23_1_a2
V. V. Shokurov. Prym varieties: theory and applications. Izvestiya. Mathematics , Tome 23 (1984) no. 1, pp. 83-147. http://geodesic.mathdoc.fr/item/IM2_1984_23_1_a2/

[1] Altman A. B., Kleiman S., Introduction to Grothendieck duality theory, Lecture Notes in Math., 146, Berlin, Heidelberg, New York, 1970 | MR

[2] Andreotti A., Mayer A., “On period relations for Abelian integrals on algebraic curves”, Ann. Scuola Norm. Sup. di Pisa, 21 (1967), 189–238 | MR | Zbl

[3] Beauville A., “Prym varieties and the Schottky problem”, Invent. Math., 41 (1977), 149–196 | DOI | MR | Zbl

[4] Beauville A., “Variétés de Prym et Jacobiennes intermédiares”, Ann. Sci. École Norm. Sup., 10 (1977), 309–391 | MR | Zbl

[5] Burbaki N., Algebra. Moduli, koltsa, formy, Nauka, M., 1966 | MR

[6] Wirtinger W., Untersuchungen über Thetafunctionen, Teubner, Berlin, 1895 | Zbl

[7] Grothendieck A., Eléments de géométrie algébrique, IHES, 1961

[8] Griffite F., Kharis Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982

[9] Dalalyan S. G., “Mnogoobraziya Prima nerazvetvlennogo dvulistnogo nakrytiya giperellipticheskoi krivoi”, Uspekhi matem. nauk, 29:6 (1974), 165–166 | MR | Zbl

[10] Dalalyan S. G., “Mnogoobraziya Prima dvulistnogo nakrytiya giperellipticheskoi krivoi s dvumya tochkami vetvleniya”, Matem. sb., 93:2 (1975), 255–267

[11] Donagi R., “The tetragonal construction”, Bulletin of AMS, 4:2 (1981), 181–185 | DOI | MR | Zbl

[12] Donagi R., Smith C., “The structure of the Prym map”, Acta Math., 146 (1980), 25–102 | DOI | MR

[13] Iskovskikh V. A., “Minimalnye modeli ratsionalnykh poverkhnostei nad proizvolnymi polyami”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 19–43 | MR | Zbl

[14] Lang S., “On quasi-algebraic closure”, Ann. of Math., 55 (1952), 373 | DOI | MR | Zbl

[15] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971

[16] Mumford D., “Theta characteristics of an algebraic curve”, Ann. Sci. Ecole Norm. Sup., 4 (1971), 181–192 | MR | Zbl

[17] Mumford D., “Prym varieties. I”, Contributions to analysis, A collection of Papers Dedicated to Lipman Bers, Academic Press, 1974, 325–350 | MR

[18] Martens H., “On the varieties of special divisors on a curve”, J. Reine Angew. Math., 227 (1967), 111–120 | MR | Zbl

[19] Masiewicki L., Prym varieties and the moduli space of curves of genus five, Ph.D. Thesis, Columbia Univ., 1974

[20] Ope O., Grafy i ikh primeneniya, Mir, M., 1965

[21] Serr Zh.-P., Algebraicheskie gruppy i polya klassov, Mir, M., 1968

[22] Tyurin A. N., “Pyat lektsii o trekhmernykh mnogoobraziyakh”, Uspekhi matem. nauk, 27:5 (1972), 3–50 | Zbl

[23] Tyurin A. N., “O peresechenii kvadrik”, Uspekhi matem. nauk, 30:6 (1975), 51–99 | MR | Zbl

[24] Tyurin A. N., “Srednii yakobian trekhmernykh mnogoobrazii”, Sovr. problemy matem., 12, 1979, 5–57 | MR | Zbl

[25] Hartshorne R., Residues and duality, Lecture Notes in Math., 20, Springer, Berlin, Heidelberg, New York, 1966 | MR | Zbl

[26] Shokurov V. V., “Otlichie primianov ot yakobianov”, XVI Vsesoyuznaya algebraicheskaya konferentsiya, Leningrad, 1981, 180–181

[27] Shokurov V. V., “Distinguishing Prymians from Jacobians”, Inven. Math., 65:2 (1981), 209–219 | DOI | MR | Zbl

[28] Shokurov V. V., “Teoremy Netera–Enrikvesa o kanonicheskikh krivykh”, Matem. sb., 86:3 (1971), 367–408 | Zbl

[29] Szpiro L., “Travaux de Kempf, Kleiman, Laksov sur les diviseurs exceptionnels”, Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 417, Lecture Notes in Math., 317, Springer, Berlin, 1973, 339–353 | MR

[30] “Recillas S.”, Bol. Soc. Mexicana, 19 (1974), 9–13 | MR

[31] Mori S., “Threefolds whose canonical bundles are not numerically effective”, Proc. Nat. Acad. Sci. USA, 77 (1980), 3125–3126 | DOI | MR | Zbl

[32] Iskovskikh V. A., “Trekhmernye algebraicheskie mnogoobraziya”, Algebra, Mosk. gos. un-t, 1982, 46–78 | MR | Zbl