The multidimensional Schr\"odinger operator with a~periodic potential
Izvestiya. Mathematics , Tome 22 (1984) no. 3, pp. 619-645.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author investigates the zonal structure of the spectrum of the three-dimensional Schrödinger operator with periodic potential. The main result is an estimate of the number $n(\lambda)$ of zones of the spectrum covering the real point $\lambda$. It is shown that, under certain conditions on the period lattice of the potential, $n(\lambda)>\lambda$ when $\lambda\to\infty$. From this estimate it follows that the number of lacunae in the spectrum of the Schrödinger operator is finite. It is also shown that for periodic potentials with small norm there are in general no lacunae in the spectrum. Analogous results are formulated for the Schrödinger operator in higher dimensions. Bibliography: 18 titles.
@article{IM2_1984_22_3_a6,
     author = {M. M. Skriganov},
     title = {The multidimensional {Schr\"odinger} operator with a~periodic potential},
     journal = {Izvestiya. Mathematics },
     pages = {619--645},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a6/}
}
TY  - JOUR
AU  - M. M. Skriganov
TI  - The multidimensional Schr\"odinger operator with a~periodic potential
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 619
EP  - 645
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a6/
LA  - en
ID  - IM2_1984_22_3_a6
ER  - 
%0 Journal Article
%A M. M. Skriganov
%T The multidimensional Schr\"odinger operator with a~periodic potential
%J Izvestiya. Mathematics 
%D 1984
%P 619-645
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a6/
%G en
%F IM2_1984_22_3_a6
M. M. Skriganov. The multidimensional Schr\"odinger operator with a~periodic potential. Izvestiya. Mathematics , Tome 22 (1984) no. 3, pp. 619-645. http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a6/

[1] Bete G., Zommerfeld A., Elektronnaya teoriya metallov, OGIZ, M., L., 1938

[2] Venkov B. A., Elementarnaya teoriya chisel, ONTI, M., L., 1937

[3] Gelfand I. M., “Razlozhenie po sobstvennym funktsiyam uravneniya s periodicheskimi koeffitsientami”, Doklady AN SSSR, 73:6 (1960), 1117–1120 | MR

[4] Devenport G., Multiplikativnaya teoriya chisel, Nauka, M., 1971 | MR

[5] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, Uspekhi matematicheskikh nauk, 31:1 (1976), 55–136 | MR | Zbl

[6] Zeitts F., Fizika metallov, OGIZ, M., L., 1947

[7] Kalluei Dzh., Teoriya energeticheskoi zonnoi struktury, Mir, M., 1969

[8] Kassels Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[9] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[10] Linnik Yu. V., Ergodicheskie svoistva algebraicheskikh polei, LGU, L., 1967

[11] Skriganov M. M., “Dokazatelstvo gipotezy Bete–Zommerfelda v razmernosti dva”, Doklady AN SSSR, 248:1 (1979), 30–42 | MR

[12] Skriganov M. M., “Konechnost chisla lakun v spektre mnogomernogo poligarmonicheskogo operatora s periodicheskim potentsialom”, Matematicheskii sbornik, 113(155):1(9) (1980), 131–145 | MR

[13] Skriganov M. M., “Obschie svoistva spektra differentsialnykh i psevdodifferentsialnykh operatorov s periodicheskimi koeffitsientami i nekotorye zadachi geometrii chisel”, Doklady AN SSSR, 256:1 (1981), 47–51 | MR | Zbl

[14] Skriganov M. M., “Stroenie spektra dvumernogo operatora Shredingera s periodicheskim potentsialom i nekotorye arifmeticheskie svoistva dvumernykh reshetok”, Trudy Matematicheskogo instituta im. V. A. Steklova AN SSSR, 158, 1981, 163–174 | MR | Zbl

[15] Skriganov M. M., “Stroenie spektra mnogomernogo operatora Shredingera s periodicheskim potentsialom”, Doklady AN SSSR, 262:4 (1982), 847–850 | MR

[16] Eastham M. S. P., The spectral theory of periodic differential equations, Scottish Academic Press, Edinburgh, 1973 | Zbl

[17] Reed M., Simon B., Methods of modern mathematical physics, v. 4, Academic Press, New York, London, 1978 | MR | Zbl

[18] Thomas L. E., “Time dependent approach to scattering from impurities in a crystal”, Comm. in Math. Phys., 33:4 (1973), 335–343 | DOI | MR