Uniqueness theorems for generalized cohomology theories
Izvestiya. Mathematics , Tome 22 (1984) no. 3, pp. 483-506.

Voir la notice de l'article provenant de la source Math-Net.Ru

A classification theorem is proved for certain types of generalized cohomology theories. The necessary technical apparatus (stable Postnikov systems and their multiplicative properties) is developed, and with its help a complete classification of spectra with coefficient ring $\mathbf F_p[t]$, and others, is carried out. Bibliography: 8 titles.
@article{IM2_1984_22_3_a3,
     author = {A. V. Pajitnov},
     title = {Uniqueness theorems for generalized cohomology theories},
     journal = {Izvestiya. Mathematics },
     pages = {483--506},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a3/}
}
TY  - JOUR
AU  - A. V. Pajitnov
TI  - Uniqueness theorems for generalized cohomology theories
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 483
EP  - 506
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a3/
LA  - en
ID  - IM2_1984_22_3_a3
ER  - 
%0 Journal Article
%A A. V. Pajitnov
%T Uniqueness theorems for generalized cohomology theories
%J Izvestiya. Mathematics 
%D 1984
%P 483-506
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a3/
%G en
%F IM2_1984_22_3_a3
A. V. Pajitnov. Uniqueness theorems for generalized cohomology theories. Izvestiya. Mathematics , Tome 22 (1984) no. 3, pp. 483-506. http://geodesic.mathdoc.fr/item/IM2_1984_22_3_a3/

[1] Switzer R. M., Algebraic Topology – Homotopy and Homology, Springer-Verlag, 1975 | MR | Zbl

[2] Milnor J. W., “The steenrod Algebra and its dual”, Ann. Math., 67 (1958), 150–171 | DOI | MR | Zbl

[3] Pazhitnov A. V., Rudyak Yu. B., O gomotopicheskom tipe vysshikh $K$-teorii Moravy, preprint, 1981

[4] Boardman J. M., “Graded Eilenberg–Maclane ring spectra”, Amer. J. Math., 102 (1980), 979–1010 | DOI | MR | Zbl

[5] Yagita N., “On the Steenrod Algebra of Morava $K$-theory”, Journal of London Math. Soc., 22 (1980), 423–438 | DOI | MR | Zbl

[6] Würgler V., “Cobordism theories of Unitary Manifolds with Singularities and Formal Group Laws”, Math. Z., 150 (1976), 239–260 | DOI | MR | Zbl

[7] Adams J. F., Priddy S. B., “Uniqueness of BSO”, Math. Proc. Camb. Phil. Soc., 80 (1976), 475–509 | DOI | MR | Zbl

[8] Milnor J. W., “On the cobordism ring $\Omega^*$ and a complex analogue”, Amer. J. Math., 82 (1960), 505–521 | DOI | MR | Zbl