On cycles on Abelian varieties of prime dimension over finite or number fields
Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 329-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Tate conjecture on algebraic cycles is proved for all absolutely simple abelian varieties of prime dimension over finite fields. Bibliography: 14 titles.
@article{IM2_1984_22_2_a7,
     author = {S. G. Tankeev},
     title = {On cycles on {Abelian} varieties of prime dimension over finite or number fields},
     journal = {Izvestiya. Mathematics },
     pages = {329--337},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a7/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On cycles on Abelian varieties of prime dimension over finite or number fields
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 329
EP  - 337
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a7/
LA  - en
ID  - IM2_1984_22_2_a7
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On cycles on Abelian varieties of prime dimension over finite or number fields
%J Izvestiya. Mathematics 
%D 1984
%P 329-337
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a7/
%G en
%F IM2_1984_22_2_a7
S. G. Tankeev. On cycles on Abelian varieties of prime dimension over finite or number fields. Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 329-337. http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a7/

[1] Deligne P., “Variétés abéliennes ordinaires sur un corps fini”, Invent. Math., 8:3 (1969), 238–243 | DOI | MR | Zbl

[2] Mumford D., “A note on Shimura's paper “Discontinuous groups and abelian varieties””, Math. Ann., 181:4 (1969), 345–351 | DOI | MR | Zbl

[3] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971

[4] Mamford D., “Abstraktnye teta-funktsii”, Matematika, 15:6 (1971), 3–11 | MR | Zbl

[5] Pyatetskii-Shapiro I. I., “Vzaimootnosheniya mezhdu gipotezami Teita i Khodzha dlya abelevykh mnogoobrazii”, Matem. sb., 85(127):4(8) (1971), 610–620

[6] Ribet K. A., “Galois action on division points of abelian varieties with real multiplications”, Amer. J. Math., 98:3 (1976), 751–804 | DOI | MR | Zbl

[7] Shimura G., “Reduction of algebraic varities with respect to a discrete valuation of the basic field”, Amer. J. Math., 77:1 (1955), 134–176 | DOI | MR | Zbl

[8] Cepp Zh.-P., Abelevy $l$-adicheskie predstavleniya i ellipticheskie krivye, Mir, M., 1973

[9] Tankeev S. G., “Ob algebraicheskikh tsiklakh na poverkhnostyakh i abelevykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 398–434 | MR | Zbl

[10] Tankeev S. G., “Ob algebraicheskikh tsiklakh na prostykh 5-mernykh abelevykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 45:4 (1981), 793–823 | MR

[11] Tankeev S. G., “Tsikly na prostykh abelevykh mnogoobraziyakh prostoi razmernosti”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 155–170 | MR

[12] Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, New York, 1965, 93–110 | MR | Zbl

[13] Teit Dzh., “Endomorfizmy abelevykh mnogoobrazii nad konechnymi polyami”, Matematika, 12:6 (1968), 31–40

[14] Teit Dzh., “Klassy izogenii abelevykh mnogoobrazii nad konechnymi polyami”, Matematika, 14:6 (1970), 129–137