On cycles on Abelian varieties of prime dimension over finite or number fields
Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 329-337

Voir la notice de l'article provenant de la source Math-Net.Ru

The Tate conjecture on algebraic cycles is proved for all absolutely simple abelian varieties of prime dimension over finite fields. Bibliography: 14 titles.
@article{IM2_1984_22_2_a7,
     author = {S. G. Tankeev},
     title = {On cycles on {Abelian} varieties of prime dimension over finite or number fields},
     journal = {Izvestiya. Mathematics },
     pages = {329--337},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a7/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On cycles on Abelian varieties of prime dimension over finite or number fields
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 329
EP  - 337
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a7/
LA  - en
ID  - IM2_1984_22_2_a7
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On cycles on Abelian varieties of prime dimension over finite or number fields
%J Izvestiya. Mathematics 
%D 1984
%P 329-337
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a7/
%G en
%F IM2_1984_22_2_a7
S. G. Tankeev. On cycles on Abelian varieties of prime dimension over finite or number fields. Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 329-337. http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a7/