On cycles on Abelian varieties of prime dimension over finite or number fields
Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 329-337
Voir la notice de l'article provenant de la source Math-Net.Ru
The Tate conjecture on algebraic cycles is proved for all absolutely simple abelian varieties of prime dimension over finite fields.
Bibliography: 14 titles.
@article{IM2_1984_22_2_a7,
author = {S. G. Tankeev},
title = {On cycles on {Abelian} varieties of prime dimension over finite or number fields},
journal = {Izvestiya. Mathematics },
pages = {329--337},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {1984},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a7/}
}
S. G. Tankeev. On cycles on Abelian varieties of prime dimension over finite or number fields. Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 329-337. http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a7/