A~criterion for boundedness of singular integral operators with complicated singularities
Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 309-327.

Voir la notice de l'article provenant de la source Math-Net.Ru

Singular integral operators acting on the space of (essentially) bounded functions defined on a smooth submanifold of $\mathbf R^n$ are considered. The singularities of the integrals given by the zeros of functions composing the integrand lie on smooth submanifolds. The basic result is as follows: if these submanifolds satisfy certain conditions of nondegeneracy type and the integral operator has no formal singularities (i.e., certain relations between the orders of the integrands and the dimensions of the manifolds of singularities are satisfied), then the singular integral operator is bounded on the space considered. Bibliography: 4 titles.
@article{IM2_1984_22_2_a6,
     author = {A. G. Sergeev},
     title = {A~criterion for boundedness of singular integral operators with complicated singularities},
     journal = {Izvestiya. Mathematics },
     pages = {309--327},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a6/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - A~criterion for boundedness of singular integral operators with complicated singularities
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 309
EP  - 327
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a6/
LA  - en
ID  - IM2_1984_22_2_a6
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T A~criterion for boundedness of singular integral operators with complicated singularities
%J Izvestiya. Mathematics 
%D 1984
%P 309-327
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a6/
%G en
%F IM2_1984_22_2_a6
A. G. Sergeev. A~criterion for boundedness of singular integral operators with complicated singularities. Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 309-327. http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a6/

[1] Sergeev A. G., Khenkin G. M., “Ravnomernye otsenki reshenii $\overline\partial$-uravneniya v psevdovypuklykh poliedrakh”, Matem. sb., 112:4 (1980), 522–567 | MR | Zbl

[2] Sergeev A. G., “Ravnomernye otsenki dlya $\overline\partial$-zadachi v oblasti Levi–Veilya”, Dokl. AN SSSR, 236:5 (1977), 1335–1338 | MR | Zbl

[3] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR

[4] Ore O., Teoriya grafov, Nauka, M., 1980 | MR