Finite local propagation rate of a~hyperbolic equation in the problem of selfadjointness of powers of a~second order elliptic differential operator
Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 277-290

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a formally selfadjoint second order elliptic expression and $H$ the minimal nonclosed operator in $L_2(\mathbf R^m)$, $m\geqslant1$, generated by it. The property of finite local propagation rate of the hyperbolic equation $\frac{\partial^2u}{\partial t^2}+S[u]=0$ is applied to obtain new criteria for the essential selfadjointness of $H$ and its powers. In these criteria restrictions are imposed on the coefficients of $S$ along a sequence of nonintersecting solid layers diverging to infinity. Bibliography: 17 titles.
@article{IM2_1984_22_2_a4,
     author = {Yu. B. Orochko},
     title = {Finite local propagation rate of a~hyperbolic equation in the problem of selfadjointness of powers of a~second order elliptic differential operator},
     journal = {Izvestiya. Mathematics },
     pages = {277--290},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a4/}
}
TY  - JOUR
AU  - Yu. B. Orochko
TI  - Finite local propagation rate of a~hyperbolic equation in the problem of selfadjointness of powers of a~second order elliptic differential operator
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 277
EP  - 290
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a4/
LA  - en
ID  - IM2_1984_22_2_a4
ER  - 
%0 Journal Article
%A Yu. B. Orochko
%T Finite local propagation rate of a~hyperbolic equation in the problem of selfadjointness of powers of a~second order elliptic differential operator
%J Izvestiya. Mathematics 
%D 1984
%P 277-290
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a4/
%G en
%F IM2_1984_22_2_a4
Yu. B. Orochko. Finite local propagation rate of a~hyperbolic equation in the problem of selfadjointness of powers of a~second order elliptic differential operator. Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 277-290. http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a4/