Finite local propagation rate of a~hyperbolic equation in the problem of selfadjointness of powers of a~second order elliptic differential operator
Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 277-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ be a formally selfadjoint second order elliptic expression and $H$ the minimal nonclosed operator in $L_2(\mathbf R^m)$, $m\geqslant1$, generated by it. The property of finite local propagation rate of the hyperbolic equation $\frac{\partial^2u}{\partial t^2}+S[u]=0$ is applied to obtain new criteria for the essential selfadjointness of $H$ and its powers. In these criteria restrictions are imposed on the coefficients of $S$ along a sequence of nonintersecting solid layers diverging to infinity. Bibliography: 17 titles.
@article{IM2_1984_22_2_a4,
     author = {Yu. B. Orochko},
     title = {Finite local propagation rate of a~hyperbolic equation in the problem of selfadjointness of powers of a~second order elliptic differential operator},
     journal = {Izvestiya. Mathematics },
     pages = {277--290},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a4/}
}
TY  - JOUR
AU  - Yu. B. Orochko
TI  - Finite local propagation rate of a~hyperbolic equation in the problem of selfadjointness of powers of a~second order elliptic differential operator
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 277
EP  - 290
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a4/
LA  - en
ID  - IM2_1984_22_2_a4
ER  - 
%0 Journal Article
%A Yu. B. Orochko
%T Finite local propagation rate of a~hyperbolic equation in the problem of selfadjointness of powers of a~second order elliptic differential operator
%J Izvestiya. Mathematics 
%D 1984
%P 277-290
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a4/
%G en
%F IM2_1984_22_2_a4
Yu. B. Orochko. Finite local propagation rate of a~hyperbolic equation in the problem of selfadjointness of powers of a~second order elliptic differential operator. Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 277-290. http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a4/

[1] Ismagilov R. S., “O samosopryazhennosti operatora Shturma–Liuvillya”, Uspekhi matem. nauk, 18:5(113) (1963), 161–166 | MR | Zbl

[2] Knowles I., “On essential self-adjointness for singular elliptic differential operators”, Math. Ann., 227:2 (1977), 155–172 | DOI | MR | Zbl

[3] Kato T., “A remark to the preceding paper by Chernoff”, J. Funct. Anal., 12:4 (1973), 415–417 | DOI | MR | Zbl

[4] Orochko Yu. B., “O dostatochnykh usloviyakh samosopryazhennosti operatora Shturma–Liuvillya”, Matem. zametki, 15:2 (1974), 271–280 | MR | Zbl

[5] Orochko Yu. B., “Dostatochnoe uslovie suschestvennoi samosopryazhennosti mnogochlenov ot operatora Shredingera”, Matem. sb., 99(141):2 (1976), 192–210 | MR | Zbl

[6] Chernoff P. R., “Schrödinger and Dirac operators with singular potentials and hyperbolic equations”, Pacific J. Math., 72:2 (1977), 361–382 | MR | Zbl

[7] Orochko Yu. B., “Metod operatornogo kosinusa v zadache o suschestvennoi samosopryazhennosti nepoluogranichennogo simmetricheskogo operatora”, Ukr. matem. zhurn., 33:3 (1981), 348–355 | MR | Zbl

[8] Uraltseva N. N., “O nesamosopryazhennosti ellipticheskogo operatora s bystro rastuschimi koeffitsientami”, Zapiski nauchnykh seminarov Leningradskogo otdeleniya ordena Lenina Matematicheskogo instituta im. V. A. Steklova AN SSSR, 14, 1969, 288–294

[9] Laptev S. A., “O zamykanii v metrike obobschennogo integrala Dirikhle”, Differentsialnye uravneniya, 7:4 (1971), 727–736 | MR | Zbl

[10] Berezanskii Yu. M., Samosopryazhennye operatory v prostranstvakh funktsii beskonechnogo chisla peremennykh, Naukova dumka, Kiev, 1978 | MR

[11] Evans W. D., “On the essential self-adjointness of powers of Schrödinger-type operators”, Proc. Roy. Soc. Edinburgh, 79A (1977), 61–77 | MR

[12] Ismagilov R. S., “Ob usloviyakh samosopryazhennosti differentsialnykh operatorov vysshego poryadka”, Dokl. AN SSSR, 142:6 (1962), 1239–1242 | MR | Zbl

[13] Orochko Yu. B., “Metod giperbolicheskogo uravneniya v teorii samosopryazhennykh ellipticheskikh differentsialnykh operatorov vtorogo poryadka”, Uspekhi matem. nauk, 34:4(208) (1979), 155

[14] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[15] Orochko Yu. B., “O svoistve globalnoi konechnoi skorosti rasprostraneniya ellipticheskogo differentsialnogo vyrazheniya vtorogo poryadka”, Differentsialnye uravneniya, 18:10 (1982), 1764–1772 | MR

[16] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, 2-e izd., pererab. i dop., Nauka, M., 1966 | MR | Zbl

[17] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, 3-e izd., Nauka, M., 1974