Harnack--Thom inequalities for mappings of real algebraic varieties
Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 247-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several analogues of the Harnack and Thom inequalities are proved for mappings of real algebraic varieties. In the statement of the analogues of the Thom inequalities an essential role is played by the notion of $GM$-variety introduced in the paper; in this connection the question of characterizing the $GM$-varieties among all real algebraic varieties is also considered. Bibliography: 6 titles.
@article{IM2_1984_22_2_a3,
     author = {V. A. Krasnov},
     title = {Harnack--Thom inequalities for mappings of real algebraic varieties},
     journal = {Izvestiya. Mathematics },
     pages = {247--275},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a3/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Harnack--Thom inequalities for mappings of real algebraic varieties
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 247
EP  - 275
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a3/
LA  - en
ID  - IM2_1984_22_2_a3
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Harnack--Thom inequalities for mappings of real algebraic varieties
%J Izvestiya. Mathematics 
%D 1984
%P 247-275
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a3/
%G en
%F IM2_1984_22_2_a3
V. A. Krasnov. Harnack--Thom inequalities for mappings of real algebraic varieties. Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 247-275. http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a3/

[1] Rokhlin V. A., “Sravneniya po modulyu 16 v shestnadtsatoi probleme Gilberta”, Funkts. analiz, 6:4 (1972), 58–64 | MR | Zbl

[2] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR | Zbl

[3] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961

[4] Krasnov V. A., “Otobrazhenie Albaneze dlya veschestvennykh algebraicheskikh mnogoobrazii”, Matem. zametki, 32:3 (1982), 365–374 | MR | Zbl

[5] Atya M., Uoll K., “Kogomologii grupp”, Algebraicheskaya teoriya chisel, Mir, M., 1969

[6] Nikulin V. V., “Tselochislennye simmetricheskie bilineinye formy i nekotorye ikh geometricheskie prilozheniya”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 111–177 | MR | Zbl