Harnack–Thom inequalities for mappings of real algebraic varieties
Izvestiya. Mathematics, Tome 22 (1984) no. 2, pp. 247-275
Cet article a éte moissonné depuis la source Math-Net.Ru
Several analogues of the Harnack and Thom inequalities are proved for mappings of real algebraic varieties. In the statement of the analogues of the Thom inequalities an essential role is played by the notion of $GM$-variety introduced in the paper; in this connection the question of characterizing the $GM$-varieties among all real algebraic varieties is also considered. Bibliography: 6 titles.
@article{IM2_1984_22_2_a3,
author = {V. A. Krasnov},
title = {Harnack{\textendash}Thom inequalities for mappings of real algebraic varieties},
journal = {Izvestiya. Mathematics},
pages = {247--275},
year = {1984},
volume = {22},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a3/}
}
V. A. Krasnov. Harnack–Thom inequalities for mappings of real algebraic varieties. Izvestiya. Mathematics, Tome 22 (1984) no. 2, pp. 247-275. http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a3/
[1] Rokhlin V. A., “Sravneniya po modulyu 16 v shestnadtsatoi probleme Gilberta”, Funkts. analiz, 6:4 (1972), 58–64 | MR | Zbl
[2] Bredon G., Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 | MR | Zbl
[3] Grotendik A., O nekotorykh voprosakh gomologicheskoi algebry, IL, M., 1961
[4] Krasnov V. A., “Otobrazhenie Albaneze dlya veschestvennykh algebraicheskikh mnogoobrazii”, Matem. zametki, 32:3 (1982), 365–374 | MR | Zbl
[5] Atya M., Uoll K., “Kogomologii grupp”, Algebraicheskaya teoriya chisel, Mir, M., 1969
[6] Nikulin V. V., “Tselochislennye simmetricheskie bilineinye formy i nekotorye ikh geometricheskie prilozheniya”, Izv. AN SSSR. Ser. matem., 43:1 (1979), 111–177 | MR | Zbl