Symplectic cobordism with singularities
Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 211-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that there exist multiplicative structures in the symplectic bordism theories with singularities of types $\Sigma_n$ and $\Sigma$, where $\Sigma_n=(\theta_1,\Phi_1,\Phi_2,\Phi_4,\dots,\Phi_{2^{n-2}})$ and $\Sigma=(\theta_1,\Phi_1,\Phi_2,\Phi_4,\dots,\Phi_{2^j},\dots)$, and that the ring $MSp^\Sigma_*$ is isomorphic to a polynomial ring $Z[w_1,\dots,w_i,\dots,x_2,x_4,\dots,x_k,\dots]$, where $i=1,2,3,\dots$; $k=2,4,5,\dots$, $k\ne2^j-1$; $\deg w_i=2(2^i-1)$ and $\deg x_k=4k$. Bibliography: 10 titles.
@article{IM2_1984_22_2_a1,
     author = {V. V. Vershinin},
     title = {Symplectic cobordism with singularities},
     journal = {Izvestiya. Mathematics },
     pages = {211--226},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a1/}
}
TY  - JOUR
AU  - V. V. Vershinin
TI  - Symplectic cobordism with singularities
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 211
EP  - 226
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a1/
LA  - en
ID  - IM2_1984_22_2_a1
ER  - 
%0 Journal Article
%A V. V. Vershinin
%T Symplectic cobordism with singularities
%J Izvestiya. Mathematics 
%D 1984
%P 211-226
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a1/
%G en
%F IM2_1984_22_2_a1
V. V. Vershinin. Symplectic cobordism with singularities. Izvestiya. Mathematics , Tome 22 (1984) no. 2, pp. 211-226. http://geodesic.mathdoc.fr/item/IM2_1984_22_2_a1/

[1] Sullivan D., “Geometric periodicity and the invariants of manifolds”, Manifolds (Amsterdam, 1970), Lecture Notes in Mathematics, 197, Berlin, 1971, 44–75 | MR | Zbl

[2] Baas N. A., On bordism theory of manifolds with singularities, Preprint Ser., No 31, 43p, Aarhus, 1969/1970 | MR | Zbl

[3] Rudyak Yu. B., “Stabilnaya $k$-teoriya i bordizmy s osobennostyami”, Dokl. AN SSSR, 216:6 (1974), 1222–1225 | Zbl

[4] Mironov O. K., “Suschestvovanie multiplikativnykh struktur v teoriyakh kobordizmov s osobennostyami”, Izv. AN SSSR. Ser. matem., 39:5 (1975), 1065–1092 | MR | Zbl

[5] Rudyak Yu. B., “Formalnye gruppy i bordizmy s osobennostyami”, Matem. sb., 96:4 (1975), 523–542 | MR | Zbl

[6] Mironov O. K., “Umnozhenie v teoriyakh kobordizmov s osobennostyami i operatsii Stinroda–Dika”, Izv. AN SSSR. Ser. matem., 42:4 (1978), 789–806 | MR | Zbl

[7] Ray N., “Indecomposable in Tors $MSp^*$”, Topology, 10:4 (1971), 261–270 | DOI | MR | Zbl

[8] Novikov S. P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Ser. matem., 31:4 (1967), 855–951 | Zbl

[9] Vershinin V. V., “Algebraicheskaya spektralnaya posledovatelnost S. P. Novikova dlya spektra $MSp$”, Sib. matem. zh., 21:1 (1980), 26–43 | MR | Zbl

[10] Boardman J. M., “Splittings of $MU$ and other spectra”, Geometric Applications of Homotopy Theory, II, Berlin, 1978, 27–79 | MR | Zbl