Some questions in the theory of varieties of groups
Izvestiya. Mathematics , Tome 22 (1984) no. 1, pp. 33-65

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a new method of studying identity relations in groups is described. Among the results obtained by this method is an example of a group variety that does not have an independent basis of identities. A conjecture by P. Hall on marginal subgroups is refuted. The question of the relation between the representation of a group variety in the form of a union and the product of two proper subvarieties is considered. An example of a group variety having a set of continuum many different covering varieties is constructed and a number of results are obtained, as corollaries, on whether (solvable) group varieties can be generated by certain classes of groups. Bibliography: 26 titles.
@article{IM2_1984_22_1_a2,
     author = {Yu. G. Kleiman},
     title = {Some questions in the theory of varieties of groups},
     journal = {Izvestiya. Mathematics },
     pages = {33--65},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1984},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_1_a2/}
}
TY  - JOUR
AU  - Yu. G. Kleiman
TI  - Some questions in the theory of varieties of groups
JO  - Izvestiya. Mathematics 
PY  - 1984
SP  - 33
EP  - 65
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1984_22_1_a2/
LA  - en
ID  - IM2_1984_22_1_a2
ER  - 
%0 Journal Article
%A Yu. G. Kleiman
%T Some questions in the theory of varieties of groups
%J Izvestiya. Mathematics 
%D 1984
%P 33-65
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1984_22_1_a2/
%G en
%F IM2_1984_22_1_a2
Yu. G. Kleiman. Some questions in the theory of varieties of groups. Izvestiya. Mathematics , Tome 22 (1984) no. 1, pp. 33-65. http://geodesic.mathdoc.fr/item/IM2_1984_22_1_a2/