Rationality of the orbit spaces of irreducible representations of the group $\operatorname{SL}_2$
Izvestiya. Mathematics, Tome 22 (1984) no. 1, pp. 23-32
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the rationality of the moduli spaces of hyperelliptic curves of genus $g\geqslant15$ is proved. Bibliography: 6 titles.
@article{IM2_1984_22_1_a1,
author = {P. I. Katsylo},
title = {Rationality of the orbit spaces of irreducible representations of the group~$\operatorname{SL}_2$},
journal = {Izvestiya. Mathematics},
pages = {23--32},
year = {1984},
volume = {22},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1984_22_1_a1/}
}
P. I. Katsylo. Rationality of the orbit spaces of irreducible representations of the group $\operatorname{SL}_2$. Izvestiya. Mathematics, Tome 22 (1984) no. 1, pp. 23-32. http://geodesic.mathdoc.fr/item/IM2_1984_22_1_a1/
[1] Springer T., Teoriya invariantov, Mir, M., 1981 | MR | Zbl
[2] Gordan P., Vorlesungen über Invariantentheorie, II, ed. G. Kerschensteiner, Teubner, Leipzig, 1887 | MR | Zbl
[3] Gatti V., Viniberghi E., “Spinors of 13-dimensional space”, Advances in Math., 30 (1978), 137–155 | DOI | MR | Zbl
[4] Mamford D., Algebraicheskaya geometriya, Mir, M., 1979 | MR
[5] Vinberg E. B., “Ratsionalnost polya invariantov treugolnoi gruppy”, Vestn. Mosk. un-ta, 1982, no. 2, 23–24 | MR | Zbl
[6] Popp H., Moduli theory and classification theory of algebraic varieteies, Lecture Notes in Math., 620, Springer-Verlag, 1977 | MR | Zbl