Closed ideals of algebras of type $B_{p,q}^\alpha$
Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 585-600

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B_{p,q}^\alpha$ be the space of functions analytic in the unit disk, with the norm $$ |f(0)|+\sup_{01}\Biggl[\int_0^\pi\frac{dh}{h^{1+\alpha q}} \biggl(\int_0^{2\pi}|f(re^{i(\theta+h)})-f(re^{i\theta})|^p\,d\theta\biggr)^{q/p}\Biggr]^{1/q}, $$ where $0\alpha1$, $p>1/\alpha$ and $1\leqslant q\leqslant\infty$, and let $C_A$ be the space of functions analytic in the unit disk and continuous in its closure. All closed ideal are described for spaces more general than $B_{p,q}^\alpha$; it is shown that for every closed ideal $I\subset B_{p,q}^\alpha$ there is a closed ideal $I_0\subset C_A$ such that $I=I_0\cap B_{p,q}^\alpha$, and conversely. Bibliography: 13 titles.
@article{IM2_1983_21_3_a6,
     author = {N. A. Shirokov},
     title = {Closed ideals of algebras of type $B_{p,q}^\alpha$},
     journal = {Izvestiya. Mathematics },
     pages = {585--600},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a6/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Closed ideals of algebras of type $B_{p,q}^\alpha$
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 585
EP  - 600
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a6/
LA  - en
ID  - IM2_1983_21_3_a6
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Closed ideals of algebras of type $B_{p,q}^\alpha$
%J Izvestiya. Mathematics 
%D 1983
%P 585-600
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a6/
%G en
%F IM2_1983_21_3_a6
N. A. Shirokov. Closed ideals of algebras of type $B_{p,q}^\alpha$. Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 585-600. http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a6/