Closed ideals of algebras of type $B_{p,q}^\alpha$
Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 585-600.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B_{p,q}^\alpha$ be the space of functions analytic in the unit disk, with the norm $$ |f(0)|+\sup_{01}\Biggl[\int_0^\pi\frac{dh}{h^{1+\alpha q}} \biggl(\int_0^{2\pi}|f(re^{i(\theta+h)})-f(re^{i\theta})|^p\,d\theta\biggr)^{q/p}\Biggr]^{1/q}, $$ where $0\alpha1$, $p>1/\alpha$ and $1\leqslant q\leqslant\infty$, and let $C_A$ be the space of functions analytic in the unit disk and continuous in its closure. All closed ideal are described for spaces more general than $B_{p,q}^\alpha$; it is shown that for every closed ideal $I\subset B_{p,q}^\alpha$ there is a closed ideal $I_0\subset C_A$ such that $I=I_0\cap B_{p,q}^\alpha$, and conversely. Bibliography: 13 titles.
@article{IM2_1983_21_3_a6,
     author = {N. A. Shirokov},
     title = {Closed ideals of algebras of type $B_{p,q}^\alpha$},
     journal = {Izvestiya. Mathematics },
     pages = {585--600},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a6/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Closed ideals of algebras of type $B_{p,q}^\alpha$
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 585
EP  - 600
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a6/
LA  - en
ID  - IM2_1983_21_3_a6
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Closed ideals of algebras of type $B_{p,q}^\alpha$
%J Izvestiya. Mathematics 
%D 1983
%P 585-600
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a6/
%G en
%F IM2_1983_21_3_a6
N. A. Shirokov. Closed ideals of algebras of type $B_{p,q}^\alpha$. Izvestiya. Mathematics , Tome 21 (1983) no. 3, pp. 585-600. http://geodesic.mathdoc.fr/item/IM2_1983_21_3_a6/

[1] Rudin W., “The closed ideals in an algebra of analytic functions”, Canad. J. M., 9 (1957), 426–434 | MR | Zbl

[2] Korenblyum B. I., “Invariantnye podprostranstva operatora sdviga vo vzveshennom gilbertovom prostranstve”, Dokl. AN SSSR, 202:6 (1972), 1258–1260

[3] Korenblyum B. I., “Zamknutye idealy koltsa $A^n$”, Funkts. analiz i ego prilozh., 6:3 (1972), 38–53 | MR

[4] Korenblyum B. I., “Invariantnye podprostranstva operatora sdviga vo vzveshennom gilbertovom prostranstve”, Matem. sb., 89:1 (1972), 110–137

[5] Shamoyan F. A., “Struktura zamknutykh idealov v nekotorykh algebrakh funktsii, analiticheskikh v kruge i gladkikh vplot do ego granitsy”, Dokl. AN SSSR, 60:3 (1975), 133–136 | MR | Zbl

[6] Dynkin E. M., “Konstruktivnaya kharakteristika klassov S. L. Soboleva–O. V. Belova”, Tr. Matem. in-ta im. Steklova AN SSSR, 155, 1981, 41–76 | MR | Zbl

[7] Dynkin E. M., “Gladkie funktsii na ploskikh mnozhestvakh”, Dokl. AN SSSR, 208:1 (1973), 25–27 | MR

[8] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, TAMS, 165 (1972), 207–226 | DOI | MR | Zbl

[9] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[10] Gurarii V. P., “Spektralnyi analiz ogranichennykh funktsii na poluosi”, Teor. funktsii, funkts. analiz i ikh prilozh., 1967, no. 5, 210–231 | MR | Zbl

[11] Shamoyan F. A., “Zamknutye idealy v algebrakh analiticheskikh funktsii, gladkikh vplot do granitsy”, Izv. AN ArmSSR. Matematika, 16:3 (1981), 173–191 | MR

[12] Gofman K., Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963

[13] Shamoyan F. A., “Postroenie odnoi spetsialnoi posledovatelnosti i struktura zamknutykh idealov v nekotorykh algebrakh analiticheskikh funktsii”, Izv. AN ArmSSR. Matematika, 7:6 (1972), 440–470 | MR