Singularities of the theta divisor of the intermediate Jacobian of a~double cover of~$P^3$ of index two
Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 355-373.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a theorem is proved on the singularities of the Poincaré theta divisor $\Theta$ of the intermediate Jacobian of a body $X$, a double cover of $P^3$ of index two: the codimension of $\Theta$ in $J_3(X)$ is two. Hence a) $X$ is not rational, b) $(J_3(X),\Theta)$ is not a Prym variety, and, as a consequence, c) $X$ has no structure of a bundle of conics. Bibliography: 13 titles.
@article{IM2_1983_21_2_a7,
     author = {A. S. Tikhomirov},
     title = {Singularities of the theta divisor of the intermediate {Jacobian} of a~double cover of~$P^3$ of index two},
     journal = {Izvestiya. Mathematics },
     pages = {355--373},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a7/}
}
TY  - JOUR
AU  - A. S. Tikhomirov
TI  - Singularities of the theta divisor of the intermediate Jacobian of a~double cover of~$P^3$ of index two
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 355
EP  - 373
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a7/
LA  - en
ID  - IM2_1983_21_2_a7
ER  - 
%0 Journal Article
%A A. S. Tikhomirov
%T Singularities of the theta divisor of the intermediate Jacobian of a~double cover of~$P^3$ of index two
%J Izvestiya. Mathematics 
%D 1983
%P 355-373
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a7/
%G en
%F IM2_1983_21_2_a7
A. S. Tikhomirov. Singularities of the theta divisor of the intermediate Jacobian of a~double cover of~$P^3$ of index two. Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 355-373. http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a7/

[1] Tikhomirov A. S., “Srednii yakobian dvoinogo prostranstva $P^3$, razvetvlennogo v kvartike”, Izv. AN SSSR. Ser. matem., 44:6 (1980), 1329–1377 | MR | Zbl

[2] Tikhomirov A. S., “Geometriya poverkhnosti Fano dvoinogo prostranstva $P^3$ s vetvleniem v kvartike”, Izv. AN SSSR. Ser. matem., 44:2 (1980), 415–442 | MR | Zbl

[3] Tyurin A. N., “Pyat lektsii o trekhmernykh mnogoobraziyakh”, Uspekhi matem. nauk, 27:5 (1972), 3–50 | Zbl

[4] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[5] Andreotti A., Mayer A., “On period relations for abelian integrals on algebraic curves”, Ann. Scuola Norm. Sup. di Pisa, 21 (1967), 189–238 | MR | Zbl

[6] Beauville A., “Prym varieties and the Schottky problem”, Invent. Math., 41 (1977), 149–196 | DOI | MR | Zbl

[7] Beauville A., “Variétés de Prym et Jacobiennes intermediaires”, Ann. Sci. Ecole Norm. Sup., 10:3 (1977), 309–391 | MR | Zbl

[8] Clemens C. H., Double solids, preprint, 1979 | MR

[9] Clemens C. H., Griffiths P. A., “The intermediate Jacobian of the cubic threefold”, Ann. of Math. (2), 95:2 (1972), 281–356 | DOI | MR | Zbl

[10] Griffiths P. A., Harris J., Principles of algebraic geometry, N. Y., 1977 | MR

[11] Kleiman S. L., “The enumerative theory of singularities”, Real and Complex singularities (Oslo, 1976, Proceedings of the Nordic Summer School/NAVF Simp. Math., Oslo, 1976), 1977, 297–396 | MR | Zbl

[12] Schmid W., “Variation of Hodge structure: the singularities of the period mapping”, Invent. math., 22 (1973), 211–319 | DOI | MR | Zbl

[13] Welters G. E., Abel–Jacobi isogenics for certain types of Fano threefolds, thesis, Amsterdam, 1981 | MR | Zbl