Singularities of the theta divisor of the intermediate Jacobian of a~double cover of~$P^3$ of index two
Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 355-373

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a theorem is proved on the singularities of the Poincaré theta divisor $\Theta$ of the intermediate Jacobian of a body $X$, a double cover of $P^3$ of index two: the codimension of $\Theta$ in $J_3(X)$ is two. Hence a) $X$ is not rational, b) $(J_3(X),\Theta)$ is not a Prym variety, and, as a consequence, c) $X$ has no structure of a bundle of conics. Bibliography: 13 titles.
@article{IM2_1983_21_2_a7,
     author = {A. S. Tikhomirov},
     title = {Singularities of the theta divisor of the intermediate {Jacobian} of a~double cover of~$P^3$ of index two},
     journal = {Izvestiya. Mathematics },
     pages = {355--373},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a7/}
}
TY  - JOUR
AU  - A. S. Tikhomirov
TI  - Singularities of the theta divisor of the intermediate Jacobian of a~double cover of~$P^3$ of index two
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 355
EP  - 373
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a7/
LA  - en
ID  - IM2_1983_21_2_a7
ER  - 
%0 Journal Article
%A A. S. Tikhomirov
%T Singularities of the theta divisor of the intermediate Jacobian of a~double cover of~$P^3$ of index two
%J Izvestiya. Mathematics 
%D 1983
%P 355-373
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a7/
%G en
%F IM2_1983_21_2_a7
A. S. Tikhomirov. Singularities of the theta divisor of the intermediate Jacobian of a~double cover of~$P^3$ of index two. Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 355-373. http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a7/