Homeomorphisms of the line and a~foliation
Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 341-354.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers foliations of codimension one and class $C^i$, $i\geqslant0$. Under specified restrictions on the fundamental group of a Novikov component the study of such a foliation can be reduced to studying the representation of the fundamental group as homeomorphisms of the line. As a result theorems are obtained about the existence of a compact leaf. Applications are obtained to the real-analytic foliations and Anosov foliations. Bibliography: 12 titles.
@article{IM2_1983_21_2_a6,
     author = {V. V. Solodov},
     title = {Homeomorphisms of the line and a~foliation},
     journal = {Izvestiya. Mathematics },
     pages = {341--354},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a6/}
}
TY  - JOUR
AU  - V. V. Solodov
TI  - Homeomorphisms of the line and a~foliation
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 341
EP  - 354
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a6/
LA  - en
ID  - IM2_1983_21_2_a6
ER  - 
%0 Journal Article
%A V. V. Solodov
%T Homeomorphisms of the line and a~foliation
%J Izvestiya. Mathematics 
%D 1983
%P 341-354
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a6/
%G en
%F IM2_1983_21_2_a6
V. V. Solodov. Homeomorphisms of the line and a~foliation. Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 341-354. http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a6/

[1] Novikov S. P., “Topologiya sloenii”, Trudy Mosk. matem. ob-va, 14 (1965), 248–278 | MR | Zbl

[2] Solodov V. V., “Ob otobrazheniyakh okruzhnosti v sloeniya”, Geometricheskie metody v zadachakh analiza i algebry, Yaroslavl, 1978

[3] Solodov V. V., “O sloeniyakh na mnogoobraziyakh so spetsialnoi fundamentalnoi gruppoi”, Uspekhi matem. nauk, 36:3 (1981), 225–226 | MR | Zbl

[4] Solodov V. V., “O sloeniyakh na mnogoobraziyakh, fundamentalnaya gruppa kotorykh imeet netrivialnyi tsentr”, Uspekhi matem. nauk, 36:6 (1981), 229–230 | MR | Zbl

[5] Solodov V. V., “Komponenty Novikova topologicheskikh sloenii”, Matem. sb., 119:3 (1982), 340–354 | MR | Zbl

[6] Tamura I., Topologiya sloenii, Mir, M., 1979 | MR | Zbl

[7] Inaba T., “On the structure of real analytic foliations of codimension. 1”, J. Fac. Sci. Univ. Tokyo, 26 (1979), 453–464 | MR | Zbl

[8] Miller M. P., “Sur les composentes de Novikov des feuilletages”, Topology, 19:2 (1980), 199–202 | DOI | MR

[9] Plante J. F., “Foliations of 3-manifolds with solvable fundamental group”, Inv. Math., 51 (1979), 219–230 | DOI | MR | Zbl

[10] Plante J. F., “Foliations with measure preserving holonomy”, Ann. of Math., 102:2 (1975), 327–361 | DOI | MR | Zbl

[11] Schweitzer P. A., “Compact leaves of foliations”, Proc. Int. Congr. Math. (Vancouver, 1974), 1, 1975, 543–546 | MR | Zbl

[12] Tsuboi T., “Foliations with trivial $\mathscr F$-subgroups”, Topology, 18 (1979), 223–233 | DOI | MR | Zbl