Isotopic classification of odd-dimensional simple links of codimension two
Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 281-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a $PL$-isotopy classification of odd-dimensional simple links of dimension $\geqslant5$ in terms of their Seifert matrices. Bibliography: 11 titles.
@article{IM2_1983_21_2_a3,
     author = {V. L. Kobel'skii},
     title = {Isotopic classification of odd-dimensional simple links of codimension two},
     journal = {Izvestiya. Mathematics },
     pages = {281--290},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a3/}
}
TY  - JOUR
AU  - V. L. Kobel'skii
TI  - Isotopic classification of odd-dimensional simple links of codimension two
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 281
EP  - 290
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a3/
LA  - en
ID  - IM2_1983_21_2_a3
ER  - 
%0 Journal Article
%A V. L. Kobel'skii
%T Isotopic classification of odd-dimensional simple links of codimension two
%J Izvestiya. Mathematics 
%D 1983
%P 281-290
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a3/
%G en
%F IM2_1983_21_2_a3
V. L. Kobel'skii. Isotopic classification of odd-dimensional simple links of codimension two. Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 281-290. http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a3/

[1] Liang Chao-Chu., “An algebraic classification of some links in codimension two”, Proc. Amer. Math. Soc., 67 (1977), 147–151 | DOI | MR | Zbl

[2] Rolfsen D., “Isotopy of links in codimension two”, J. of the Indian Math. Soc., 36 (1972), 263–278 | MR

[3] Rolfsen D., “Localized Alexander invariants and isotopy of links”, Ann. Math., 101 (1975), 1–19 | DOI | MR | Zbl

[4] Kearton C., “An algebraic classification of some even-dimensional knots”, Topology, 15 (1976), 363–373 | DOI | MR | Zbl

[5] Levine J., “An algebraic classification of some knots in codimension two”, Comment. Math. Helv., 45 (1970), 185–198 | DOI | MR | Zbl

[6] Levine J., “Knot cobordism groups in codimension two”, Comment. Math. Helv., 44 (1969), 229–243 | DOI | MR

[7] Kervaire M., “Les noeuds de dimensions supérieures”, Bull. Soc. Math. France, 93 (1965), 225–271 | MR | Zbl

[8] Levine J., “Invariants of knot cobordism”, Invent. Math., 8 (1969), 98–110 | DOI | MR | Zbl

[9] Gutierrez M., “Boundary links and an unlinking theorem”, Trans. Amer. Math. Soc., 171 (1972), 491–501 | DOI | MR

[10] Cappell S., Shaneson J., “Link cobordism”, Comment. Math. Helv., 55 (1980), 20–50 | DOI | MR

[11] Kawauchi A., “On links not cobordant to split links”, Topology, 19 (1980), 321–334 | DOI | MR | Zbl