The structure of a fundamental system of solutions of a singularly perturbed equation with a regular singular point
Izvestiya. Mathematics, Tome 21 (1983) no. 2, pp. 415-424
Cet article a éte moissonné depuis la source Math-Net.Ru
The method of regularization is applied to obtain a fundamental system of solutions of a singularly perturbed equation with a regular singular point $$ \varepsilon^2z^2w''+\varepsilon zp(z)w'+g(z)w =0. $$ The solutions are of the form $$ w_k(z,\varepsilon)=z^{r_k(\varepsilon)/\varepsilon} \exp\biggl\{\frac1{\varepsilon}\int_0^z\lambda_k(\tau)\,d\tau\biggr\} \sum_{i=0}^\infty\varepsilon^iw^k_i(z),\quad k=1,2. $$ The series are asymptotically convergent as $\varepsilon\to0$ uniformly in $z$ in some bounded domain. Here the $r_k(\varepsilon)$ are the roots of the indicial equations, the $\lambda_k(z)$ are the roots of the characteristic equation and the functions $w_i^k(z)$ are the solutions of certain recurrent linear differential equations of the first order. The results are applied to an asymptotic expansion of Bessel functions $I_\nu(\nu z)$ as $\nu\to\infty$. Bibliography: 5 titles.
@article{IM2_1983_21_2_a10,
author = {S. A. Lomov and A. S. Yudina},
title = {The structure of a~fundamental system of solutions of a~singularly perturbed equation with a~regular singular point},
journal = {Izvestiya. Mathematics},
pages = {415--424},
year = {1983},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a10/}
}
TY - JOUR AU - S. A. Lomov AU - A. S. Yudina TI - The structure of a fundamental system of solutions of a singularly perturbed equation with a regular singular point JO - Izvestiya. Mathematics PY - 1983 SP - 415 EP - 424 VL - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a10/ LA - en ID - IM2_1983_21_2_a10 ER -
%0 Journal Article %A S. A. Lomov %A A. S. Yudina %T The structure of a fundamental system of solutions of a singularly perturbed equation with a regular singular point %J Izvestiya. Mathematics %D 1983 %P 415-424 %V 21 %N 2 %U http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a10/ %G en %F IM2_1983_21_2_a10
S. A. Lomov; A. S. Yudina. The structure of a fundamental system of solutions of a singularly perturbed equation with a regular singular point. Izvestiya. Mathematics, Tome 21 (1983) no. 2, pp. 415-424. http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a10/
[1] Rabinovich Yu. A., Khapaev M. M., “Lineinye uravneniya s malym parametrom pri starshei proizvodnoi v okrestnosti regulyarno-osoboi tochki”, Dokl. AN SSSR, 129:2 (1959), 268–271 | MR | Zbl
[2] Yudina A. S., “Regulyarizovannye asimptoticheskie resheniya uravnenii s regulyarnoi osoboi tochkoi”, Tr. MEI, 499 (1980), 147–151 | MR | Zbl
[3] Lomov S. A., “Metod vozmuschenii dlya singulyarnykh zadach”, Izv. AN SSSR. Ser. matem., 36:3 (1972), 635–651 | MR | Zbl
[4] Golubev V. V., Lektsii po analiticheskoi teorii differentsialnykh uravnenii, GITTL, M., 1950
[5] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR