On a~$p$-adic analogue of Tate height
Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 201-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the Tate height of an elliptic curve and its $p$-adic analogue. The main result is a series of explicit formulas for computing the local archimedean part of the Tate height. These results are used to obtain a new method for constructing the $p$-adic Tate height. Bibliography: 5 titles.
@article{IM2_1983_21_2_a0,
     author = {A. A. Berzin'sh},
     title = {On a~$p$-adic analogue of {Tate} height},
     journal = {Izvestiya. Mathematics },
     pages = {201--210},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a0/}
}
TY  - JOUR
AU  - A. A. Berzin'sh
TI  - On a~$p$-adic analogue of Tate height
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 201
EP  - 210
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a0/
LA  - en
ID  - IM2_1983_21_2_a0
ER  - 
%0 Journal Article
%A A. A. Berzin'sh
%T On a~$p$-adic analogue of Tate height
%J Izvestiya. Mathematics 
%D 1983
%P 201-210
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a0/
%G en
%F IM2_1983_21_2_a0
A. A. Berzin'sh. On a~$p$-adic analogue of Tate height. Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 201-210. http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a0/

[1] Kassels Dzh., “Diofantovy uravneniya so spetsialnym rassmotreniem ellipticheskikh krivykh”, Matematika, 12:1 (1968), 110–160

[2] Manin Yu. I., “Vysota Teita tochek na abelevom mnogoobrazii, ee varianty i prilozheniya”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1363–1390 | MR | Zbl

[3] Demyanenko V. A., “O gipoteze Mordella”, Izv. AN SSSR. Ser. matem., 38:6 (1974), 1193–1201 | MR

[4] Neron A., “Hauters et fonctions thêta”, Rend. Sem. Mat. Fis. Milano, 46 (1976), 111–135 | DOI | MR | Zbl

[5] Berzinsh A. A., “Konechnost chisla ratsionalnykh tochek na algebraicheskikh krivykh nekotorogo klassa”, 16-ya Vsesoyuznaya algebraicheskaya konferentsiya, tezisy, ch. 1, 1981, 18–19