On a~$p$-adic analogue of Tate height
Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 201-210
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the study of the Tate height of an elliptic curve and its
$p$-adic analogue. The main result is a series of explicit formulas for computing the local archimedean part of the Tate height. These results are used to obtain
a new method for constructing the $p$-adic Tate height.
Bibliography: 5 titles.
@article{IM2_1983_21_2_a0,
author = {A. A. Berzin'sh},
title = {On a~$p$-adic analogue of {Tate} height},
journal = {Izvestiya. Mathematics },
pages = {201--210},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a0/}
}
A. A. Berzin'sh. On a~$p$-adic analogue of Tate height. Izvestiya. Mathematics , Tome 21 (1983) no. 2, pp. 201-210. http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a0/