On a $p$-adic analogue of Tate height
Izvestiya. Mathematics, Tome 21 (1983) no. 2, pp. 201-210
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper is devoted to the study of the Tate height of an elliptic curve and its $p$-adic analogue. The main result is a series of explicit formulas for computing the local archimedean part of the Tate height. These results are used to obtain a new method for constructing the $p$-adic Tate height. Bibliography: 5 titles.
@article{IM2_1983_21_2_a0,
author = {A. A. Berzin'sh},
title = {On a~$p$-adic analogue of {Tate} height},
journal = {Izvestiya. Mathematics},
pages = {201--210},
year = {1983},
volume = {21},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a0/}
}
A. A. Berzin'sh. On a $p$-adic analogue of Tate height. Izvestiya. Mathematics, Tome 21 (1983) no. 2, pp. 201-210. http://geodesic.mathdoc.fr/item/IM2_1983_21_2_a0/
[1] Kassels Dzh., “Diofantovy uravneniya so spetsialnym rassmotreniem ellipticheskikh krivykh”, Matematika, 12:1 (1968), 110–160
[2] Manin Yu. I., “Vysota Teita tochek na abelevom mnogoobrazii, ee varianty i prilozheniya”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1363–1390 | MR | Zbl
[3] Demyanenko V. A., “O gipoteze Mordella”, Izv. AN SSSR. Ser. matem., 38:6 (1974), 1193–1201 | MR
[4] Neron A., “Hauters et fonctions thêta”, Rend. Sem. Mat. Fis. Milano, 46 (1976), 111–135 | DOI | MR | Zbl
[5] Berzinsh A. A., “Konechnost chisla ratsionalnykh tochek na algebraicheskikh krivykh nekotorogo klassa”, 16-ya Vsesoyuznaya algebraicheskaya konferentsiya, tezisy, ch. 1, 1981, 18–19