Decomposition of a~birational map of three-dimensional varieties outside codimension~2
Izvestiya. Mathematics , Tome 21 (1983) no. 1, pp. 187-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result is the proof of the fact that one can perform a finite number of monoidal transformations with nonsingular centers in such a way that any two nonsingular birationally isomorphic threefolds become isomorphic outside codimension $2$, and the subsets at which the varieties are not isomorphic consist of unions of nonsingular rational curves transversally intersecting with each other. Bibliography: 8 titles.
@article{IM2_1983_21_1_a7,
     author = {Vik. S. Kulikov},
     title = {Decomposition of a~birational map of three-dimensional varieties outside codimension~2},
     journal = {Izvestiya. Mathematics },
     pages = {187--200},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a7/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - Decomposition of a~birational map of three-dimensional varieties outside codimension~2
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 187
EP  - 200
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a7/
LA  - en
ID  - IM2_1983_21_1_a7
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T Decomposition of a~birational map of three-dimensional varieties outside codimension~2
%J Izvestiya. Mathematics 
%D 1983
%P 187-200
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a7/
%G en
%F IM2_1983_21_1_a7
Vik. S. Kulikov. Decomposition of a~birational map of three-dimensional varieties outside codimension~2. Izvestiya. Mathematics , Tome 21 (1983) no. 1, pp. 187-200. http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a7/

[1] Danilov V. I., “Dekompozitsiya nekotorykh biratsionalnykh morfizmov”, Izv. AN SSSR. Ser. matem., 44:2 (1980), 465–477 | MR | Zbl

[2] Crauder B., Birational morphisms of smooth algebraic 3-folds collapsing three surfaces to a point, preprint, 1980

[3] Crauder B., Birational morphisms of smooth algebraic 3-folds collapsing a divisor with no triple points to a point, preprint, 1980

[4] Schaps M., “Birational morphisms factorizable by two monoidal transformations”, Math. Annal., 222 (1976), 23–28 | DOI | MR | Zbl

[5] Kulikov V. S., “Vyrozhdeniya $K3$ poverkhnostei”, Izv. AN SSSR. Ser. matem., 41:5 (1977), 1008–1042 | MR | Zbl

[6] Nakano S., “On the inverse of monoidal transformations”, Publ. Res. Inst. Math. Sci., 6 (1970/71), 483–502 | DOI | MR

[7] Hironaka H., “Resolutions of singularities over fields of characteristic zero. I”, Ann. of Math. (2), 79 (1964), 109–203 | DOI | MR | Zbl

[8] Shafarovich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR