Pencils of lines and the topology of real algebraic curves
Izvestiya. Mathematics , Tome 21 (1983) no. 1, pp. 161-170

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a pencil of lines, a new restriction on the location of ovals of a nonsingular plane curve is obtained. It turns out that the location of a curve separating its complexification with respect to a pencil of lines determines to a significant degree the complex orientation of the curve. Furthermore, a new invariant of the strict isotopy type of the curve is given, which in particular distinguishes some seventh degree $M$-curves with the same complex scheme. A restriction on the complex orientation of seventh degree $M$-curves is proved. Bibliography: 9 titles.
@article{IM2_1983_21_1_a5,
     author = {T. Fidler},
     title = {Pencils of lines and the topology of real algebraic curves},
     journal = {Izvestiya. Mathematics },
     pages = {161--170},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a5/}
}
TY  - JOUR
AU  - T. Fidler
TI  - Pencils of lines and the topology of real algebraic curves
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 161
EP  - 170
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a5/
LA  - en
ID  - IM2_1983_21_1_a5
ER  - 
%0 Journal Article
%A T. Fidler
%T Pencils of lines and the topology of real algebraic curves
%J Izvestiya. Mathematics 
%D 1983
%P 161-170
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a5/
%G en
%F IM2_1983_21_1_a5
T. Fidler. Pencils of lines and the topology of real algebraic curves. Izvestiya. Mathematics , Tome 21 (1983) no. 1, pp. 161-170. http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a5/