Surfaces of class $\mathrm{VII}_0$ and affine geometry
Izvestiya. Mathematics , Tome 21 (1983) no. 1, pp. 31-73

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a complete and detailed proof of the theorem to the effect that the only surfaces of class $\mathrm{VII}_0$ with $b_2=0$ are the Inoue–Kodaira surfaces. Besides that, it contains several results on manifolds with affine structures whose holonomy groups are commutative; in particular, the general case is reduced to the case when the holonomy group is diagonal. Bibliography: 16 titles.
@article{IM2_1983_21_1_a1,
     author = {F. A. Bogomolov},
     title = {Surfaces of class $\mathrm{VII}_0$ and affine geometry},
     journal = {Izvestiya. Mathematics },
     pages = {31--73},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a1/}
}
TY  - JOUR
AU  - F. A. Bogomolov
TI  - Surfaces of class $\mathrm{VII}_0$ and affine geometry
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 31
EP  - 73
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a1/
LA  - en
ID  - IM2_1983_21_1_a1
ER  - 
%0 Journal Article
%A F. A. Bogomolov
%T Surfaces of class $\mathrm{VII}_0$ and affine geometry
%J Izvestiya. Mathematics 
%D 1983
%P 31-73
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a1/
%G en
%F IM2_1983_21_1_a1
F. A. Bogomolov. Surfaces of class $\mathrm{VII}_0$ and affine geometry. Izvestiya. Mathematics , Tome 21 (1983) no. 1, pp. 31-73. http://geodesic.mathdoc.fr/item/IM2_1983_21_1_a1/