Suprema of Fourier coefficients on classes of continuous and differentiable functions of several variables
Izvestiya. Mathematics, Tome 20 (1983) no. 3, pp. 611-624 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Equalities that are multidimensional analogues of the familiar Lebesgue–Nikol'skii–Efimov relations are obtained for upper bounds of Fourier coefficients on classes of continuous and differentiable functions of several variables. Bibliography: 6 titles.
@article{IM2_1983_20_3_a8,
     author = {A. I. Stepanets},
     title = {Suprema of {Fourier} coefficients on classes of continuous and differentiable functions of several variables},
     journal = {Izvestiya. Mathematics},
     pages = {611--624},
     year = {1983},
     volume = {20},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a8/}
}
TY  - JOUR
AU  - A. I. Stepanets
TI  - Suprema of Fourier coefficients on classes of continuous and differentiable functions of several variables
JO  - Izvestiya. Mathematics
PY  - 1983
SP  - 611
EP  - 624
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a8/
LA  - en
ID  - IM2_1983_20_3_a8
ER  - 
%0 Journal Article
%A A. I. Stepanets
%T Suprema of Fourier coefficients on classes of continuous and differentiable functions of several variables
%J Izvestiya. Mathematics
%D 1983
%P 611-624
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a8/
%G en
%F IM2_1983_20_3_a8
A. I. Stepanets. Suprema of Fourier coefficients on classes of continuous and differentiable functions of several variables. Izvestiya. Mathematics, Tome 20 (1983) no. 3, pp. 611-624. http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a8/

[1] Lebeg A., “Sur la representation triegonometrique approcheé des fonction satisfaisant à une condition de Lipschitz”, Bull. Math. de France, 39 (1910), 184–210

[2] Efimov A. V., “Priblizhenie nepreryvnykh periodicheskikh funktsii summami Fure”, Izv. AN SSSR. Ser. matem., 24:2 (1960), 243–296 | MR | Zbl

[3] Nikolskii S. M., “Ryad Fure funktsii s dannym modulem nepreryvnosti”, Dokl. AN SSSR, 52:3 (1946), 191–194

[4] Stepanets A. I., Priblizhenie summami Fure nepreryvnykh periodicheskikh funktsii mnogikh peremennykh, preprint IM-77-2, Kiev, 1977 | MR

[5] Stepanets V. I., “Otsenki otklonenii chastnykh summ Fure na klassakh nepreryvnykh periodicheskikh funktsii mnogikh peremennykh”, Izv. AN SSSR. Ser. matem., 44:5 (1980), 1150–1190 | MR | Zbl

[6] Ponomarenko V. G., O lineinykh protsessakh priblizheniya nepreryvnykh periodicheskikh funktsii dvukh peremennykh, avtoreferat kand. diss., Dnepropetrovsk, 1956