Suprema of Fourier coefficients on classes of continuous and differentiable functions of several variables
Izvestiya. Mathematics , Tome 20 (1983) no. 3, pp. 611-624.

Voir la notice de l'article provenant de la source Math-Net.Ru

Equalities that are multidimensional analogues of the familiar Lebesgue–Nikol'skii–Efimov relations are obtained for upper bounds of Fourier coefficients on classes of continuous and differentiable functions of several variables. Bibliography: 6 titles.
@article{IM2_1983_20_3_a8,
     author = {A. I. Stepanets},
     title = {Suprema of {Fourier} coefficients on classes of continuous and differentiable functions of several variables},
     journal = {Izvestiya. Mathematics },
     pages = {611--624},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a8/}
}
TY  - JOUR
AU  - A. I. Stepanets
TI  - Suprema of Fourier coefficients on classes of continuous and differentiable functions of several variables
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 611
EP  - 624
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a8/
LA  - en
ID  - IM2_1983_20_3_a8
ER  - 
%0 Journal Article
%A A. I. Stepanets
%T Suprema of Fourier coefficients on classes of continuous and differentiable functions of several variables
%J Izvestiya. Mathematics 
%D 1983
%P 611-624
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a8/
%G en
%F IM2_1983_20_3_a8
A. I. Stepanets. Suprema of Fourier coefficients on classes of continuous and differentiable functions of several variables. Izvestiya. Mathematics , Tome 20 (1983) no. 3, pp. 611-624. http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a8/

[1] Lebeg A., “Sur la representation triegonometrique approcheé des fonction satisfaisant à une condition de Lipschitz”, Bull. Math. de France, 39 (1910), 184–210

[2] Efimov A. V., “Priblizhenie nepreryvnykh periodicheskikh funktsii summami Fure”, Izv. AN SSSR. Ser. matem., 24:2 (1960), 243–296 | MR | Zbl

[3] Nikolskii S. M., “Ryad Fure funktsii s dannym modulem nepreryvnosti”, Dokl. AN SSSR, 52:3 (1946), 191–194

[4] Stepanets A. I., Priblizhenie summami Fure nepreryvnykh periodicheskikh funktsii mnogikh peremennykh, preprint IM-77-2, Kiev, 1977 | MR

[5] Stepanets V. I., “Otsenki otklonenii chastnykh summ Fure na klassakh nepreryvnykh periodicheskikh funktsii mnogikh peremennykh”, Izv. AN SSSR. Ser. matem., 44:5 (1980), 1150–1190 | MR | Zbl

[6] Ponomarenko V. G., O lineinykh protsessakh priblizheniya nepreryvnykh periodicheskikh funktsii dvukh peremennykh, avtoreferat kand. diss., Dnepropetrovsk, 1956