On the Cauchy problem and $T$-products for hypoelliptic systems
Izvestiya. Mathematics , Tome 20 (1983) no. 3, pp. 577-609.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem is studied for systems of pseudodifferential hypoelliptic equations. An existence and uniqueness theorem is established for the solution, the asymptotic behavior of the solution as $t\to0$ is examined, and various representations of the solution in the form of $T$-products of operators are studied. Bibliography: 18 titles.
@article{IM2_1983_20_3_a7,
     author = {I. A. Shishmarev},
     title = {On the {Cauchy} problem and $T$-products for hypoelliptic systems},
     journal = {Izvestiya. Mathematics },
     pages = {577--609},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a7/}
}
TY  - JOUR
AU  - I. A. Shishmarev
TI  - On the Cauchy problem and $T$-products for hypoelliptic systems
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 577
EP  - 609
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a7/
LA  - en
ID  - IM2_1983_20_3_a7
ER  - 
%0 Journal Article
%A I. A. Shishmarev
%T On the Cauchy problem and $T$-products for hypoelliptic systems
%J Izvestiya. Mathematics 
%D 1983
%P 577-609
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a7/
%G en
%F IM2_1983_20_3_a7
I. A. Shishmarev. On the Cauchy problem and $T$-products for hypoelliptic systems. Izvestiya. Mathematics , Tome 20 (1983) no. 3, pp. 577-609. http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a7/

[1] Alimov A. L., “O svyazi mezhdu kontinualnymi integralami i differentsialnymi uravneniyami”, Teor. i matem. fiz., 11:2 (1972), 182–189 | MR

[2] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR

[3] Bogolyubov N. N., Shirkov Yu. V., Vvedenie v teoriyu kvantovannykh polei, Gostekhizdat, M., 1957

[4] Buslaev V. S., “Kontinualnye integraly i asimptotika reshenii parabolicheskikh uravnenii pri $t\to 0$. Prilozheniya k difraktsii”, Problemy matematicheskoi fiziki, vyp. 2, Leningrad. un-t, L., 1967, 85–107 | MR

[5] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, Gos. iz-vo fiz.-mat. lit., M., 1958 | MR

[6] Daletskii Yu. L., “Kontinualnye integraly, svyazannye s operatornymi evolyutsionnymi uravneniyami”, Uspekhi matem. nauk, 17:5 (1962), 3–115 | MR

[7] Evgrafov M. A., “Ob odnoi formule dlya predstavleniya fundamentalnogo resheniya differentsialnogo uravneniya kontinualnym integralom”, Dokl. AN SSSR, 191:5 (1970), 979–982 | MR | Zbl

[8] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[9] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR

[10] Maslov V. P., Shishmarëv I. A., “O $T$-proizvedenii gipoellipticheskikh operatorov”, Sovremennye problemy matematiki, 8, M., 1977, 137–197 | Zbl

[11] Khermander L., “Psevdodifferentsialnye operatory i gipoellipticheskie uravneniya”, Psevdodifferentsialnye operatory, Mir, M., 1967, 297–367

[12] Shishmarëv I. A., “Ob asimptotike pri $t\to 0$ i $T$-iroizvedeniya dlya gipoellipticheskikh sistem”, Dokl. AN SSSR, 226:5 (1976), 1018–1020 | MR | Zbl

[13] Shishmarëv I. A., “Zadacha Koshi dlya gipoellipticheskikh sistem i predstavlenie vzaimodeistviya”, Diff. uravneniya, 15:7 (1979), 1337–1339 | MR | Zbl

[14] Araki H., “Expansional in Banach algebras”, Ann. Scient. Ec. Norm. Sup. (4), 6 (1973), 67–81 | MR

[15] Feynman R. P., “Space-time approach to non-relativistic quantum mechanics”, Rev. Mod. Phys., 20 (1948), 367–387 | DOI | MR

[16] Fujiwara D., “A construction of the fundamental solution for the Schrödinger equation”, J. d'Analyse Math., 35 (1979), 41–96 | DOI | MR | Zbl

[17] Nelson E., “Feinmann integrals and the Schrödinger equation”, J. Math. Phys., 5:3 (1964), 332–343 | DOI | MR | Zbl

[18] Shwinger J., “Quantum electrodynamics. I. A covariant formulation”, Phys. Rev., 74:10 (1948), 1439–1461 | DOI | MR