On the Cauchy problem and $T$-products for hypoelliptic systems
Izvestiya. Mathematics, Tome 20 (1983) no. 3, pp. 577-609 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem is studied for systems of pseudodifferential hypoelliptic equations. An existence and uniqueness theorem is established for the solution, the asymptotic behavior of the solution as $t\to0$ is examined, and various representations of the solution in the form of $T$-products of operators are studied. Bibliography: 18 titles.
@article{IM2_1983_20_3_a7,
     author = {I. A. Shishmarev},
     title = {On the {Cauchy} problem and $T$-products for hypoelliptic systems},
     journal = {Izvestiya. Mathematics},
     pages = {577--609},
     year = {1983},
     volume = {20},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a7/}
}
TY  - JOUR
AU  - I. A. Shishmarev
TI  - On the Cauchy problem and $T$-products for hypoelliptic systems
JO  - Izvestiya. Mathematics
PY  - 1983
SP  - 577
EP  - 609
VL  - 20
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a7/
LA  - en
ID  - IM2_1983_20_3_a7
ER  - 
%0 Journal Article
%A I. A. Shishmarev
%T On the Cauchy problem and $T$-products for hypoelliptic systems
%J Izvestiya. Mathematics
%D 1983
%P 577-609
%V 20
%N 3
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a7/
%G en
%F IM2_1983_20_3_a7
I. A. Shishmarev. On the Cauchy problem and $T$-products for hypoelliptic systems. Izvestiya. Mathematics, Tome 20 (1983) no. 3, pp. 577-609. http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a7/

[1] Alimov A. L., “O svyazi mezhdu kontinualnymi integralami i differentsialnymi uravneniyami”, Teor. i matem. fiz., 11:2 (1972), 182–189 | MR

[2] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR

[3] Bogolyubov N. N., Shirkov Yu. V., Vvedenie v teoriyu kvantovannykh polei, Gostekhizdat, M., 1957

[4] Buslaev V. S., “Kontinualnye integraly i asimptotika reshenii parabolicheskikh uravnenii pri $t\to 0$. Prilozheniya k difraktsii”, Problemy matematicheskoi fiziki, vyp. 2, Leningrad. un-t, L., 1967, 85–107 | MR

[5] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, Gos. iz-vo fiz.-mat. lit., M., 1958 | MR

[6] Daletskii Yu. L., “Kontinualnye integraly, svyazannye s operatornymi evolyutsionnymi uravneniyami”, Uspekhi matem. nauk, 17:5 (1962), 3–115 | MR

[7] Evgrafov M. A., “Ob odnoi formule dlya predstavleniya fundamentalnogo resheniya differentsialnogo uravneniya kontinualnym integralom”, Dokl. AN SSSR, 191:5 (1970), 979–982 | MR | Zbl

[8] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[9] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR

[10] Maslov V. P., Shishmarëv I. A., “O $T$-proizvedenii gipoellipticheskikh operatorov”, Sovremennye problemy matematiki, 8, M., 1977, 137–197 | Zbl

[11] Khermander L., “Psevdodifferentsialnye operatory i gipoellipticheskie uravneniya”, Psevdodifferentsialnye operatory, Mir, M., 1967, 297–367

[12] Shishmarëv I. A., “Ob asimptotike pri $t\to 0$ i $T$-iroizvedeniya dlya gipoellipticheskikh sistem”, Dokl. AN SSSR, 226:5 (1976), 1018–1020 | MR | Zbl

[13] Shishmarëv I. A., “Zadacha Koshi dlya gipoellipticheskikh sistem i predstavlenie vzaimodeistviya”, Diff. uravneniya, 15:7 (1979), 1337–1339 | MR | Zbl

[14] Araki H., “Expansional in Banach algebras”, Ann. Scient. Ec. Norm. Sup. (4), 6 (1973), 67–81 | MR

[15] Feynman R. P., “Space-time approach to non-relativistic quantum mechanics”, Rev. Mod. Phys., 20 (1948), 367–387 | DOI | MR

[16] Fujiwara D., “A construction of the fundamental solution for the Schrödinger equation”, J. d'Analyse Math., 35 (1979), 41–96 | DOI | MR | Zbl

[17] Nelson E., “Feinmann integrals and the Schrödinger equation”, J. Math. Phys., 5:3 (1964), 332–343 | DOI | MR | Zbl

[18] Shwinger J., “Quantum electrodynamics. I. A covariant formulation”, Phys. Rev., 74:10 (1948), 1439–1461 | DOI | MR