Group schemes of period $p$
Izvestiya. Mathematics, Tome 20 (1983) no. 3, pp. 411-433
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper gives an explicit construction of the finite commutative group schemes of period $p$ defined over the ring of integers of the algebraic closure of the field $\mathbf Q_p$, and describes them in terms of a category of modules. Bibliography: 4 titles.
@article{IM2_1983_20_3_a0,
author = {V. A. Abrashkin},
title = {Group schemes of period~$p$},
journal = {Izvestiya. Mathematics},
pages = {411--433},
year = {1983},
volume = {20},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a0/}
}
V. A. Abrashkin. Group schemes of period $p$. Izvestiya. Mathematics, Tome 20 (1983) no. 3, pp. 411-433. http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a0/
[1] Teit Dzh., Oort F., “Gruppovye skhemy prostogo poryadka”, Matematika, 16:1 (1972), 165–183 | MR
[2] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971
[3] Raynaud M., “Schemàs en groups de type ($p,\dots, p$)”, Bull. Soc. Mat. France, 102:3 (1974), 241–280 | MR | Zbl
[4] Fontaine J.-M., “Groupes finis commutatifs sur les vecteurs de Witt”, C. R. Acad. Sci., 280:21 (1975), A1423–A1425 | MR