Group schemes of period~$p$
Izvestiya. Mathematics , Tome 20 (1983) no. 3, pp. 411-433.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives an explicit construction of the finite commutative group schemes of period $p$ defined over the ring of integers of the algebraic closure of the field $\mathbf Q_p$, and describes them in terms of a category of modules. Bibliography: 4 titles.
@article{IM2_1983_20_3_a0,
     author = {V. A. Abrashkin},
     title = {Group schemes of period~$p$},
     journal = {Izvestiya. Mathematics },
     pages = {411--433},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a0/}
}
TY  - JOUR
AU  - V. A. Abrashkin
TI  - Group schemes of period~$p$
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 411
EP  - 433
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a0/
LA  - en
ID  - IM2_1983_20_3_a0
ER  - 
%0 Journal Article
%A V. A. Abrashkin
%T Group schemes of period~$p$
%J Izvestiya. Mathematics 
%D 1983
%P 411-433
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a0/
%G en
%F IM2_1983_20_3_a0
V. A. Abrashkin. Group schemes of period~$p$. Izvestiya. Mathematics , Tome 20 (1983) no. 3, pp. 411-433. http://geodesic.mathdoc.fr/item/IM2_1983_20_3_a0/

[1] Teit Dzh., Oort F., “Gruppovye skhemy prostogo poryadka”, Matematika, 16:1 (1972), 165–183 | MR

[2] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971

[3] Raynaud M., “Schemàs en groups de type ($p,\dots, p$)”, Bull. Soc. Mat. France, 102:3 (1974), 241–280 | MR | Zbl

[4] Fontaine J.-M., “Groupes finis commutatifs sur les vecteurs de Witt”, C. R. Acad. Sci., 280:21 (1975), A1423–A1425 | MR