The structure of the variety of pairs of commuting pencils of symmetric matrices
Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 391-410.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper describes the components of the variety of classes of pairs of commuting pencils of symmetric matrices. Bibliography: 7 titles.
@article{IM2_1983_20_2_a8,
     author = {A. N. Tyurin},
     title = {The structure of the variety of pairs of commuting pencils of symmetric matrices},
     journal = {Izvestiya. Mathematics },
     pages = {391--410},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a8/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - The structure of the variety of pairs of commuting pencils of symmetric matrices
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 391
EP  - 410
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a8/
LA  - en
ID  - IM2_1983_20_2_a8
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T The structure of the variety of pairs of commuting pencils of symmetric matrices
%J Izvestiya. Mathematics 
%D 1983
%P 391-410
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a8/
%G en
%F IM2_1983_20_2_a8
A. N. Tyurin. The structure of the variety of pairs of commuting pencils of symmetric matrices. Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 391-410. http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a8/

[1] Barth W., “Moduli of vector bundles on the projective plane”, Invent. Math., 42 (1977), 63–93 | DOI | MR

[2] Barth W., “Irreducibility of the space of mathematical instant on bundles with rank 2 and $c_2=4$”, Math. Ann., 258:1 (1981), 81–106 | DOI | MR | Zbl

[3] Grothendieck A., “Les schemas de Hilbert”, Sem. Bourbaki (1960–1961), 221

[4] Mumford D., “An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg de Vries equation and related non-linear equations”, Intl. Symp. on Algebraic Geometry Kyoto, 1977, 145–153

[5] Tyurin A. N., “O peresechenii kvadrik”, Uspekhi matem. nauk, 30:6 (1975), 51–100 | MR

[6] Tyurin A. N., “Geometriya osobennostei obschei kvadratichnoi formy”, Izv. AN SSSR. Ser. matem., 44:5 (1980), 1200–1227 | MR

[7] Wall C. T. C., “Nets of quadrics and theta-characteristics of singular curves”, Phil. Trans. of R. S. Lond.(A), 289 (1978), 229–269 | DOI | MR | Zbl