On conic bundle structures
Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 355-390

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper determines under which conditions an algebraic variety can be uniquely (up to equivalence) represented in the form of a conic bundle. The results are used to show that many conic bundles over rational varieties are nonrational, and to construct examples of nonrational algebraic threefolds whose three-dimensional integral cohomology group is trivial. Bibliography: 16 titles.
@article{IM2_1983_20_2_a7,
     author = {V. G. Sarkisov},
     title = {On conic bundle structures},
     journal = {Izvestiya. Mathematics },
     pages = {355--390},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a7/}
}
TY  - JOUR
AU  - V. G. Sarkisov
TI  - On conic bundle structures
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 355
EP  - 390
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a7/
LA  - en
ID  - IM2_1983_20_2_a7
ER  - 
%0 Journal Article
%A V. G. Sarkisov
%T On conic bundle structures
%J Izvestiya. Mathematics 
%D 1983
%P 355-390
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a7/
%G en
%F IM2_1983_20_2_a7
V. G. Sarkisov. On conic bundle structures. Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 355-390. http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a7/