On conic bundle structures
Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 355-390.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper determines under which conditions an algebraic variety can be uniquely (up to equivalence) represented in the form of a conic bundle. The results are used to show that many conic bundles over rational varieties are nonrational, and to construct examples of nonrational algebraic threefolds whose three-dimensional integral cohomology group is trivial. Bibliography: 16 titles.
@article{IM2_1983_20_2_a7,
     author = {V. G. Sarkisov},
     title = {On conic bundle structures},
     journal = {Izvestiya. Mathematics },
     pages = {355--390},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a7/}
}
TY  - JOUR
AU  - V. G. Sarkisov
TI  - On conic bundle structures
JO  - Izvestiya. Mathematics 
PY  - 1983
SP  - 355
EP  - 390
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a7/
LA  - en
ID  - IM2_1983_20_2_a7
ER  - 
%0 Journal Article
%A V. G. Sarkisov
%T On conic bundle structures
%J Izvestiya. Mathematics 
%D 1983
%P 355-390
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a7/
%G en
%F IM2_1983_20_2_a7
V. G. Sarkisov. On conic bundle structures. Izvestiya. Mathematics , Tome 20 (1983) no. 2, pp. 355-390. http://geodesic.mathdoc.fr/item/IM2_1983_20_2_a7/

[1] Abhyankar S. S., Resolution of singularities of algebraic surfaces, Acad. Press, New York, London, 1966 | MR | Zbl

[2] Artin M., Mumford D., “Some elementary examples of unirational varieties which are non rational”, Proc. London Math. Soc., 25:1 (1972), 75–96 | DOI | MR

[3] Beauville A., “Variétés de Prym et Jacobiennes intermédiares”, Ann. scient. Ecol. norm. super. (4), 10:3 (1977), 309–399 | MR

[4] Grothendieck A., “Sur quelques propriétés fondamentales en theorie des intersection”, Seminar Chevally “Anneax Chow”, Paris, 1958

[5] Grothendieck A., Le grope Brauer, Dix exposes sur la cohomologie des schemes, North–Holland, Amsterdam, 1968

[6] Deuring M., Algebren, Springer, Berlin, 1935 | MR | Zbl

[7] Hironaka H., “Razreshenie osobennostei algebraicheskikh mnogoobrazii nad polem kharakteristiki nul”, Matematika, 9:6 (1965), 3–70

[8] Iskovskikh V. A., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii”, Sovremennye problemy matematiki. Itogi nauki i tekhniki, 12, 1979, 159–236 | MR | Zbl

[9] Mumford D., Lektsii o krivykh na algebraicheskikh poverkhnostyakh, Mir, M., 1968 | Zbl

[10] Zagorskii A. A., “O trekhmernykh konicheskikh rassloeniyakh”, Matem. zametki, 21:6 (1977), 745–758 | MR | Zbl

[11] Manin Yu. I., “Lektsii o $K$-funktore v algebraicheskoi geometrii”, Uspekhi matem. nauk, 24:5 (1969), 3–86 | MR | Zbl

[12] Porteous I., “Blowing up Chern classes”, Proc. Cambridge Phil. Soc., 56:2 (1960), 118–224 | DOI | MR

[13] Raynaud M., Gruson L., “Critérium platitude et de projectivite”, Inv. math., 13:1–2 (1971), 1–89 | DOI | MR | Zbl

[14] Sarkisov V. G., “Biratsionalnye avtomorfizmy rassloenii konik”, Izv. AN SSSR. Ser. matem., 44:4 (1980), 918–945 | MR | Zbl

[15] Tyurin A. N., “Geometriya modulei vektornykh rassloenii”, Uspekhi matem. nauk, 29:6 (1974), 59–88 | MR | Zbl

[16] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl